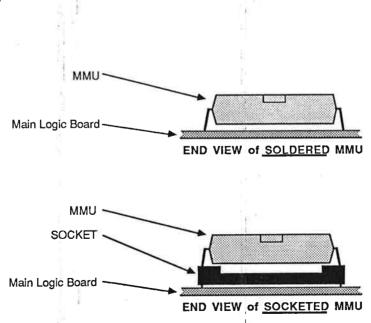
65816 16 Bit Card

Æ APPLIED ENGINEERING

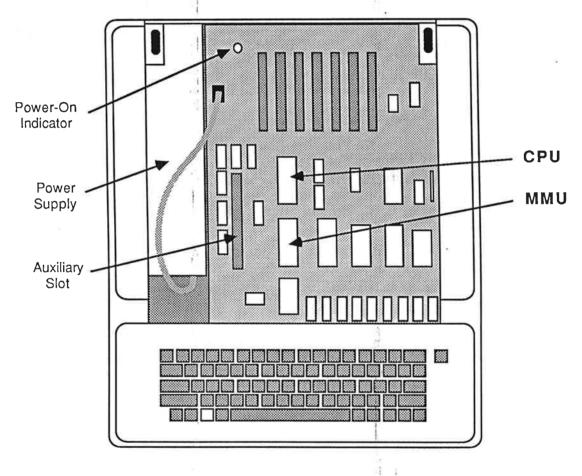
Special Applied Engineering (Beta)16 Bit Card Software Developer's Package


The version of the 16 Bit Card that is being sent to software developers is "only" capable of addressing up to 8 Meg of memory. The version that will be shipped to customers will be capable of addressing up to 16 Meg of memory, the full capability of the 65816 processor. This Beta version of the 16 Bit Card is provided with only one ribbon cable to connect it to a RamWorks II memory expansion card. Ordinarilly it would have another shorter ribbon cable to connect the 16 Bit Card (P2) to a 2 Meg. RamWorks memory expander piggy-back card. This "2 Meg." cable is not required when using the 512K version of the RamWorks memory expander piggy-back card.

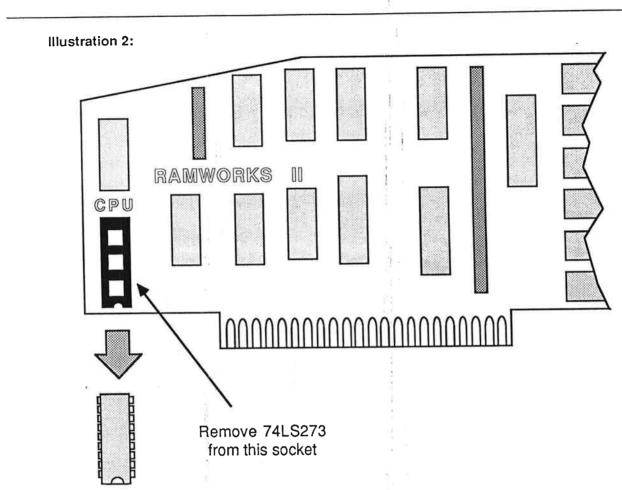
Applied Engineering Technical Support

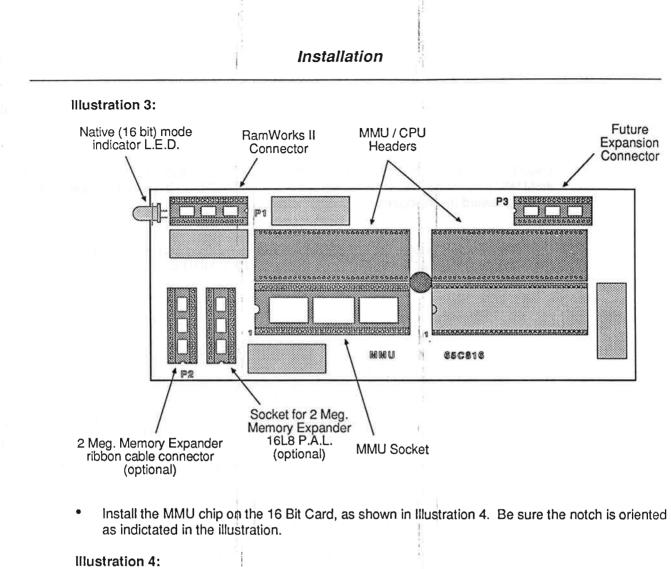
Applied Engineering has a staff of technicians dedicated to answering specific questions about Applied Engineering products and software. If your question cannot be resolved by the technician, he will refer the question to the appropriate engineer. The technical support representatives are available Monday through Friday, between the hours of 9 AM to 5 PM (Central). The technical support telephone number is (214)241-6069. Please have as much information as possible available about your problem if you call.

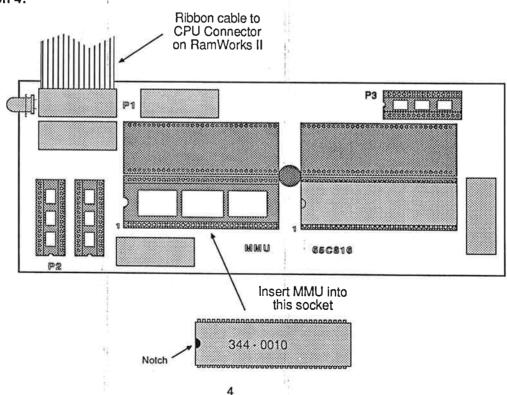
Soldered MMU chip on the //e main logic board


Important!: Some (very few) Apple //e's were manufactured with the MMU chip soldered in. If your //e does not have a socket for the MMU, the MMU will have to be desoldered and a socket installed. This is very tricky and should only done by a professional with the proper tools. Apple Computer, Inc has assured us that //e's are now assembled with socketed MMU chips.

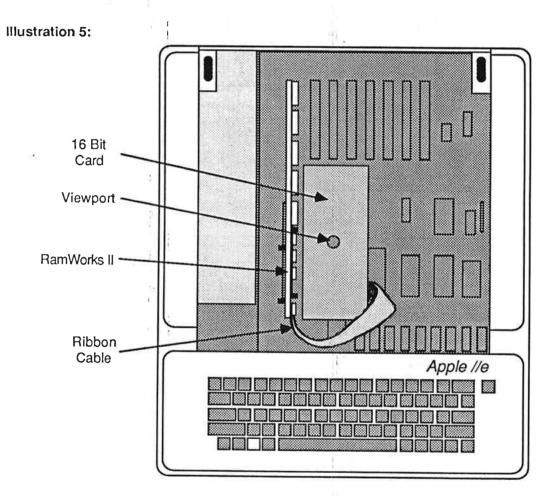
Installing the 16 Bit Card

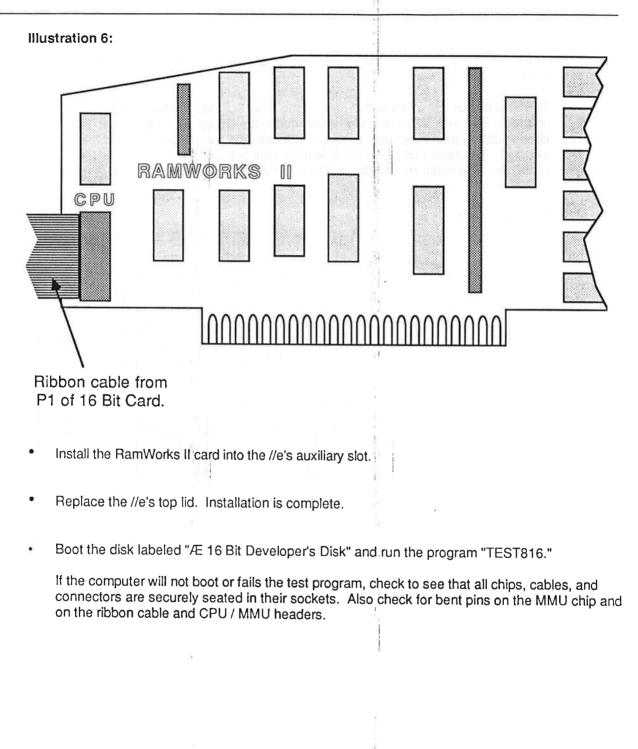

- Turn the //e power switch to the OFF position, but leave the computer plugged in.
- Remove the //e top lid.
- Make sure the power-on indicator light inside the computer is OFF. (See Illustration 1.)




- If installed, remove the RamWorks II card from the //e auxiliary slot.
- Remove the 74LS273 chip from the RamWorks II socket marked "CPU." (Refer to Illustration 2.) Carefully set the RamWorks II aside and store the 74LS273 in a safe place.

Installation

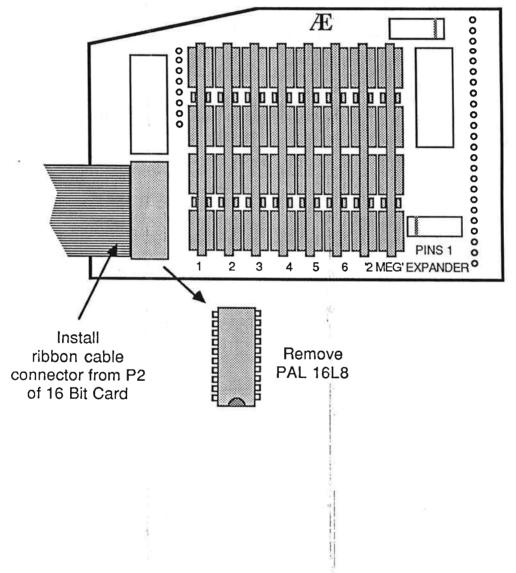

- Locate the CPU chip and the MMU chip on the //e main logic board. (Refer to Illustration 1.)
- Remove the MMU chip from the //e main logic board. Use a small flatblade screwdriver to gently lift alternate ends of the chip until it is free from its socket. Carefully set the MMU chip aside.
- Remove the CPU chip in the same manner. The //e's CPU chip is not required with the 16 Bit Card installed. Store it in a safe place.
- Verify that all pins on the 16 Bit Card CPU and MMU header connectors are straight. (Refer to Illustration 3.)


-

- Plug one of the ribbon cable header connectors (both ends are the same) into the 16 Bit Card socket marked "P1" exactly as shown in Illustration 4.
- Invert the 16 Bit Card (solder side up; component side down) and position it above the CPU and MMU sockets on the //e main logic board. The red LED on the 16 Bit Card should be pointing toward the keyboard.
- Using the viewport to align the header pins on the 16 Bit Card with the socket holes on the //e
 main logic board, install the 16 Bit Card into the CPU and MMU sockets. Press gently but firmly
 until the card is securely seated.

 Position the keyboard end of the RamWorks II card near the installed 16 Bit Card. Install the free end of the 16 Bit Card ribbon cable to the RamWorks II socket marked "CPU." Verify that all header connector pins are fully seated in the socket and that the cable is installed as shown in Illustration 6.

Installation



Installation

For developers with the 2 Meg. RamWorks memory expansion piggy-back card, a special ribbon cable is required to connect the 16 Bit Card to the 2 Meg. expander card. This cable is available from Applied Engineering.

To install this cable you must first remove the PAL16L8 chip from the 2 Meg. expander and install it on the 16 Bit Card. This chip is to be inserted in the socket *NEXT* to socket "P2." One end of the ribbon cable is then connected to socket "P2" with the cable trailing toward the keyboard when installed. The other end of this cable is to be connected to the empty 16L8 socket on the 2 Meg. expander. The cable should also trail toward the keyboard end of the card when installed.

Illustration 7:

Operation and Architecture

-

-

F

-

<u>___</u>

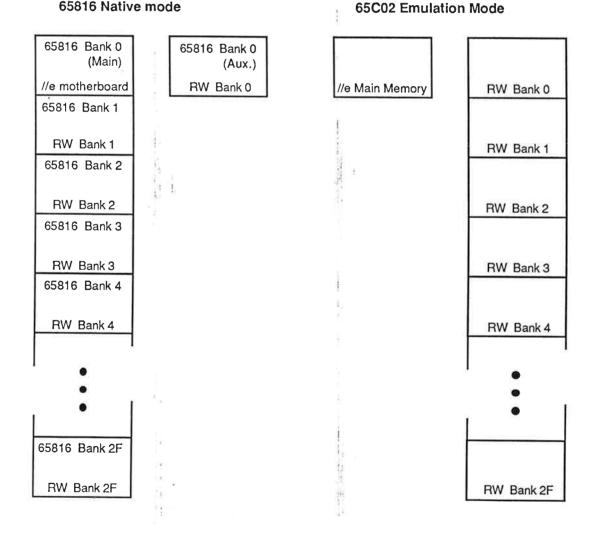
 \equiv

=

The 16 Bit Card will allow you to address up to 16 Meg linearly, using the 65816 processor's native mode of operation. In 65C02 emulation mode, the memory on the Ramworks II card will look and act exactly like the memory on a Ramworks II without the 16 Bit Card installed, with one exception: with the 16 Bit Card installed, hitting CONTROL-RESET will always put you back in BANK 0; on a Ramworks II without the 16 Bit Card, CONTROL-RESET has no effect on the bank register.

If you have a 1 Meg Ramworks II, you will get banks 00 thru 0F, whether you are in 65C02 emulation mode or in the 65816 native mode. If you have a 1 Meg Ramworks II with a 1/2 Meg (512 K) piggy back, you will get banks 00-17, whether you are in 65C02 emulation mode or in 65815 native mode.

If you have worked with the Applied Engineering 2 Meg piggy back board before, you probably know of its unique memory mapping scheme. Banks are arranged in the order 00 through 0F (on Ramworks II), then from 10-17,30-37,50-57,70-77 (on the 2 Meg piggy back). This is done to maintain compatibility with other piggy back cards from Applied Engineering, and with the original Ramworks. In 65C02 emulation mode, the banks retain this partially non linear mapping; however, in 65816 native mode, the banks become linearized, from 00 thru 2F.

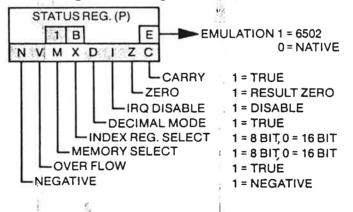

In an Apple IIe equipped with a Ramworks II but not a 16 Bit Card, the memory on the Ramworks II is accessed as alternate banks of auxiliary memory. The 64K of memory on the Apple IIe motherboard is accessed when the MMU's softswitches are set one way (MAIN memory) and the memory on the Ramworks II card is accessed when the MMU's softswitches are set the other way (AUXILIARY memory). One unique bank of 64K of memory is chosen from the available banks on the Ramworks II card by the BANK SELECT REGISTER, which is in the IIe's memory map at location \$C073. Bank 0 on the Ramworks II card is where the video generator circuits in the Apple IIe look for the 80 column video and Double High Resolution graphics information. No matter what 64K bank the BANK SELECT REGISTER is pointing to, all video access goes to bank 0. (This feature is patented by Applied Engineering.)

All hardware locations, including the MMU's softswitches, are located in the \$C000 to \$CFFF range of memory (hereafter referred to as \$CXXX), which is called the HARDWARE PAGE. With a Ramworks II installed, access to \$CXXX range of memory IN ANY BANK will access the hardware page. In other words, the \$CXXX range of ANY BANK is mapped into the HARDWARE PAGE.

When the 16 Bit Card is installed and running in the 65C02 emulation mode, the softswitches still work exactly as they do without the 16 Bit Card. However, when the processor is in the 65816 native mode accesses to the hardware page can only be accomplished from 65816 BANK 0. Any bank other than 65816 BANK 0 will not allow you to access the hardware page. If you are in a 65816 bank other than BANK 0, and you access the \$CXXX range, you will be accessing RAM MEMORY, NOT the hardware page. When you are in 65816 BANK 0, the Apple IIe softswitches, which are in the hardware page, will allow you to flip back and forth between main memory or auxillary memory. If you are in a bank other than BANK 0, the softswitches will have no effect. That is, even if you go into a 65816 bank other than BANK 0, the softswitches will have no effect. This is because there is no auxiliary memory associated with 65816 banks other than BANK 0. In 65816 native mode, BANK 0 main memory is the 64K on the Apple IIe motherboard, and BANK 0 auxiliary memory and aux memory (as long as you are in BANK 0); this makes using the 80 column video and double high resolution graphics easier. If the 65816 is in a bank other than BANK 0, it will map into a corresponding bank on the Ramworks III or a piggy back card.

The softswitches that control access to the LANGUAGE CARD area of memory that overlays the motherboard ROM space can only be accessed from 65816 BANK 0. Further, they only have an effect in 65816 BANK 0. Because the 65816 looks for its interrupt vectors in BANK 0 at locations \$FFF4 through \$FFFF, you must use the language card RAM space to store these vectors.

One further note on using softswitches: The 65816 can have 8-bit wide registers or 16-bit wide registers. In the 65C02 emulation mode all registers (except the PC) are 8-bits wide, but in the native mode you can set the width of the X and Y registers with the X bit in the Processor Status Register (P). If X=0 the X and Y registers are 16-bits wide, and if X=1 then X and Y are 8-bits wide. The M bit in the P register controls the width of the Accumulator. If M=0 then the Accumulator is 16-bits wide, and if M=1 then the accumulator is 8-bits wide. You should only access the hardware page if M=1 and X=1. This will prevent unwanted problems because of writes to two successive addresses.


16 Bit Memory Maps

The following pages have been excerpted from the W65C816 Data Sheet and are reprinted with permission from Western Design Center, Inc.

W65C816 Processor Programming Model

A DITC	1
8 BITS	8 BITS
X Register Hi (XH)	I X Register Low (X) (XL)
Y Register Hi (YH)	(Y) Y Register Low (YL)
Stack Register F (SH)	(S) Stack Reg. Low
Accumulator (B)	(C) Accumulator
Program (PCH)	(PC) Counter (PCL)
Direct Reg. Hi (DH)	1 Direct Reg. Low (D) (DL)
	(XH) Y Register Hi (YH) Stack Register H (SH) Accumulator (B) Program (PCH) Direct Reg. Hi

Status Register Coding

Functional Description

The W65C802 offers the design engineer the opportunity to utilize both existing software programs and hardware configurations, while also achieving the added advantages of increased register lengths and faster execution times. The W65C802's "ease of use" design and implementation features provide the designer with increased flexibility and reduced implementation costs. In the Emulation mode, the W65C802 not only offers software compatibility, but is also hardware (pin-to-pin) compatible with 6502 designs...plus it provides the advantages of 16-bit internal operation in 6502-compatible applications. The W65C802 is an excellent direct replacement microprocessor for 6502 designs.

The W65C816 provides the design engineer with upward mobility and software compatibility in applications where a 16-bit system configuration is desired. The W65C816's 16-bit hardware configuration, coupled with current software allows a wide selection of system applications. In the Emulation mode, the W65C816 offers many advantages, including full software compatibility with 6502 coding. In addition, the W65C816's powerful instruction set and addressing modes make it an excellent choice for new 16-bit designs.

Internal organization of the W65C802 and W65C816 can be divided into two parts: 1) The Register Section, and 2) The Control Section. Instructions (or opcodes) obtained from program memory are executed by implementing a series of data transfers within the Register Section. Signals that cause data transfers to be executed are generated within the Control Section. Both the W65C802 and the W65C816 have a 16-bit internal architecture with an 8-bit external data bus.

Instruction Register and Decode

An opcode enters the processor on the Data Bus, and is latched into the Instruction Register during the instruction fetch cycle. This instruction is then decoded, along with timing and interrupt signals, to generate the various Instruction Register control signals.

Timing Control Unit (TCU)

The Timing Control Unit keeps track of each instruction cycle as it is executed. The TCU is set to zero each time an instruction fetch is executed, and is advanced at the beginning of each cycle for as many cycles as is required to complete the instruction. Each data transfer between registers depends upon decoding the contents of both the Instruction Register and the Timing Control Unit.

Arithmetic and Logic Unit (ALU)

All arithmetic and logic operations take place within the 16-bit ALU. In addition to data operations, the ALU also calculates the effective address for relative and indexed addressing modes. The result of a data operation is stored in either memory or an internal register. Carry, Negative, Overflow and Zero flags may be updated following the ALU data operation.

Internal Registers (Refer to Programming Model)

Accumulators (A, B, C)

The Accumulator is a general purpose register which stores one of the operands, or the result of most arithmetic and logical operations. In the Native mode (E=0), when the Accumulator Select Bit (M) equals zero, the Accumulator is established as 16 bits wide (A + B = C). When the Accumulator Select Bit (M) equals one, the Accumulator is 8 bits wide (A). In this case, the upper 8 bits (B) may be used for temporary storage in conjunction with the Exchange Accumulator (XBA) instruction.

Data Bank Register (DBR)

During modes of operation, the 8-bit Data Bank Register holds the default bank address for memory transfers. The 24-bit address is composed of the 16-bit instruction effective address and the 8-bit Data Bank ad-

dress. The register value is multiplexed with the data value and is present on the Data/Address lines during the first half of a data transfer memory cycle for the W65CB16. The Data Bank Register is initialized to zero dur-Ing Reset

Direct (D)

The 16-bit Direct Register provides an address offset for all instructions using direct addressing. The effective bank zero address is formed by adding the 8-bit instruction operand address to the Direct Register. The Direct Register is initialized to zero during Reset.

Index (X and Y)

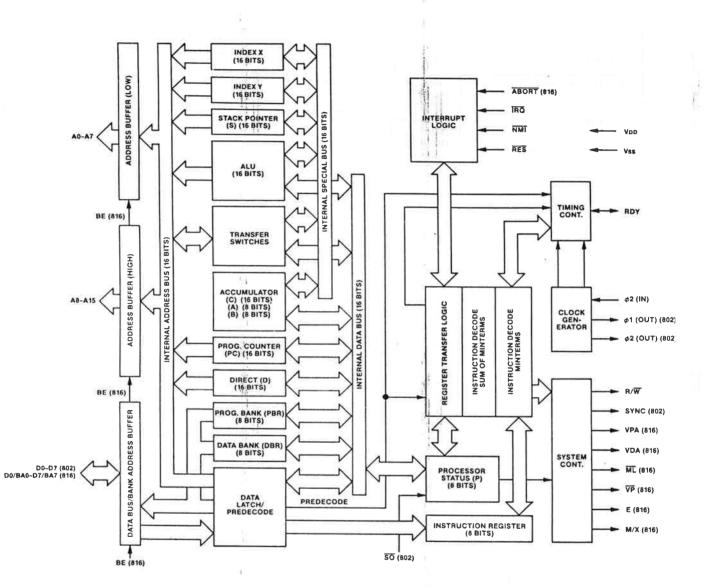
There are two Index Registers (X and Y) which may be used as general purpose registers or to provide an index value for calculation of the effective address. When executing an instruction with indexed addressing, the microprocessor fetches the opcode and the base address, and then modifies the address by adding the Index Register contents to the address prior to performing the desired operation. Pre-indexing or postindexing of indirect addresses may be selected. In the Native mode (E=0), both Index Registers are 16 bits wide (providing the Index Select Bit (X) equals zero). If the Index Select Bit (X) equals one, both registers will be 8 bits wide, and the high byte is forced to zero.

Processor Status (P)

The 8-bit Processor Status Register contains status flags and mode select bits. The Carry (C), Negative (N), Overflow (V), and Zero (Z) status flags serve to report the status of most ALU operations. These status flags are tested by use of Conditional Branch instructions. The Decimal (D), IRQ Disable (I), Memory/Accumulator (M), and Index (X) bits are used as mode select flags. These flags are set by the program to change microprocessor operations.

The Emulation (E) select and the Break (B) flags are accessible only through the Processor Status Register. The Emulation mode select flag is selected by the Exchange Carry and Emulation Bits (XCE) instruction. Table 1, W65C802 and W65C816 Mode Comparison, illustrates the features of the Native (E=0) and Emulation (E=1) modes. The M and X flags are always equal to one in the Emulation mode. When an interrupt occurs during the Emulation mode, the Break flag is written to stack memory as bit 4 of the Processor Status Register.

Program Bank Register (PBR)


The 8-bit Program Bank Register holds the bank address for all instruction fetches. The 24-bit address consists of the 16-bit instruction effective address and the 8-bit Program Bank address. The register value is multiplexed with the data value and presented on the Data/Address lines during the first half of a program memory read cycle. The Program Bank Register is initialized to zero during Reset. The PHK instruction pushes the PBR register onto the Stack.

Program Counter (PC)

The 16-bit Program Counter Register provides the addresses which are used to step the microprocessor through sequential program instructions. The register is incremented each time an instruction or operand is fetched from program memory.

Stack Pointer (S)

The Stack Pointer is a 16-bit register which is used to indicate the next available location in the stack memory area. It serves as the effective address in stack addressing modes as well as subroutine and interrupt processing. The Stack Pointer allows simple implementation of nested subroutines and multiple-level interrupts. During the Emulation mode, the Stack Pointer high-order byte (SH) is always equal to one. The bank address for all stack operations is Bank zero.

W65C816 Compatibility Issues

	W65C816/802	W65C02	NMOS 6502
1, S (Stack)	Always page 1 (E = 1), 8 bits 16 bits when (E = 0).	Always page 1, 8 bits	Always page 1, 8 bits
2. X (X Index Register)	Indexed page zero always in page 0 (E = 1), Cross page (E = 0).	Always page 0	Always page 0
3. Y (Y Index Register)	Indexed page zero always in page 0 (E = 1), Cross page (E = 0).	Always page 0	Always page 0
4. A (Accumulator)	8 bits (M = 1), 16 bits (M = 0)	8 bits	8 bits
5. P (Flag Registor)	N, V, and Z flags valid in decimal mode. D = 0 after reset or interrupt.	N, V, and Z flags valid in decimal mode. D = 0 after reset and interrupt.	N, V, and Z flags invalid in decimal mode. D = unknown after reset. D not modified after interrup
6, Timing A. ABS, X ASL, LSR, ROL, ROR With No Page Crossing	7 cycles	6 cycles	7 cycles
 B. Jump Indirect Operand = XXFF 	5 cycles	6 cycles	5 cycles and invalid page crossing
C. Branch Across Page	4 cycles (E = 1) 3 cycles (E = 0)	4 cycles	4 cycles
D. Decimal Mode	No additional cycle	Add 1 cycle	No additional cycle
7. BRK Vector	00FFFE,F (E = 1) BRK bit = 0 on stack if IRQ, NMI, ABORT. 00FFE6, 7 (E = 0) X = X on Stack always.	FFFE,F BRK bit = 0 on stack if IRQ, NMI.	FFE,F BRK bit = 0 on stack if IRQ, NMI.
8. Interrupt or Break Bank Address	PBR not pushed (E = 1) RTI PBR not pulled (E = 1) PBR pushed (E = 0) RTI PBR pulled (E = 0)	Not available	Not available
9. Memory Lock (ML)	ML = 0 during Read, Modify and Write cycles.	ML = 0 during Modify and Write,	Not available
10. Indexed Across Page Boundary (d),y; a,x; a,y	Extra read of invalid address. (Note 1)	Extra read of last instruction fetch.	Extra read of invalid address
11. RDY Pulled During Write Cycle.	Ignored (E = 1) for W65C802 only. Processor stops (E = 0).	Processor stops	Ignored
12. WAI and STP Instructions.	Available	Available	Not available
13. Unused OP Codes	One reserved OP Code specified as WDM will be used in future systems. The W65CB16 performs a no-operation.	No operation	Unknown and some "hang up" processor.
14. Bank Address Handling	PBR = 00 after reset or interrupts.	Not available	Not available
15. R/W During Read-Modify- Write Instructions	E = 1, R/W = 0 during Modify and Write cycles. E = 0, R/W = 0 only during Write cycle.	R/W = 0 only during Write cycle	R/W = 0 during Modify and Write cycles.
16. Pin 7	W65C802 = SYNC. W65C816 = VPA	SYNC	SYNC
17. COP Instruction Signatures 00-7F user defined Signatures 80-FF reserved	Available	Not available	Not available

Note 1. See Caveat section for additional information,

W65C802 and W65C816

Microprocessor Addressing Modes

The W65C816 is capable of directly addressing 16 MBytes of memory. This address space has special significance within certain addressing modes, as fo'lows:

Reset and Interrupt Vectors

The Reset and Interrupt vectors use the majority of the fixed addresses between 00FFE0 and 00FFFF.

Stack

The Stack may use memory from 000000 to 00FFFF. The effective address of Stack and Stack Relative addressing modes will always be within this range.

Direct

The Direct addressing modes are usually used to store memory registers and pointers. The effective address generated by Direct, Direct, X and Direct,Y addressing modes is always in Bank 0 (000000-00FFFF).

Program Address Space

The Program Bank register is not affected by the Relative, Relative Long, Absolute, Absolute Indirect, and Absolute Indexed Indirect addressing modes or by incrementing the Program Counter from FFFF. The only instructions that affect the Program Bank register are: RTI, RTL, JML, JSL, and JMP Absolute Long. Program code may exceed 64K bytes although code segments may not span bank boundaries.

Data Address Space

The data address space is contiguous throughout the 16 MByte address space. Words, arrays, records, or any data structures may span 64 KByte bank boundaries with no compromise in code efficiency. The following addressing modes generate 24-bit effective addresses:

- Direct Indexed Indirect (d,x)
- Direct Indirect Indexed (d),y
- Direct Indirect (d)
- Direct Indirect Long [d]
- Direct Indirect Long Indexed [d],y
- Absolute a
- Absolute a.x
 - Absolute a,y
 - Absolute Long al
 - Absolute Long Indexed al,x
 - Stack Relative Indirect Indexed (d,s),y

The following addressing mode descriptions provide additional detail as to how effective addresses are calculated.

Twenty-four addressing modes are available for use with the W65C802 and W65C816 microprocessors. The "long" addressing modes may be used with the W65C802; however, the high byte of the address is not available to the hardware. Detailed descriptions of the 24 addressing modes are as follows:

1. Immediate Addressing-#

The operand is the second byte (second and third bytes when in the 16-bit mode) of the instruction.

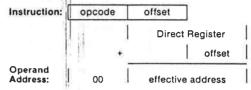
2. Absolute—a

With Absolute addressing the second and third bytes of the instruction form the low-order 16 bits of the effective address. The Data Bank Register contains the high-order 8 bits of the operand address.

Instruction:	opcode	addrl	addrh
Operand Address:	DBR	addrh	addrl

Address: DBR addrh

3. Absolute Long-al


The second, third, and fourth byte of the instruction form the 24-bit effective address.

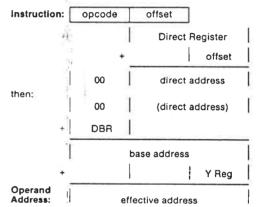
Instruction:	opcode	addri	addrh	baddr
Operand Address:	baddr	addrh	addrl	

4. Direct-d

The second byte of the instruction is added to the Direct Register (D) to form the effective address. An additional cycle is required

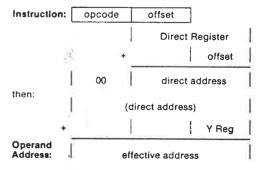
when the Direct Register is not page aligned (DL not equal 0). The Bank register is always 0.

5. Accumulator—A

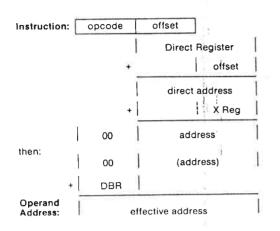

This form of addressing always uses a single byte instruction. The operand is the Accumulator.

6. Implied—i

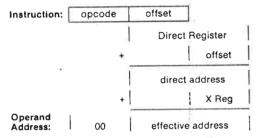
Implied addressing uses a single byte instruction. The operand is implicitly defined by the instruction.


7. Direct Indirect Indexed-(d),y

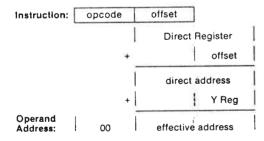
This address mode is often referred to as Indirect,Y. The second byte of the instruction is added to the Direct Register (D). The 16-bit contents of this memory location is then combined with the Data Bank register to form a 24-bit base address. The Y Index Register is added to the base address to form the effective address.


8. Direct Indirect Long Indexed-[d],y

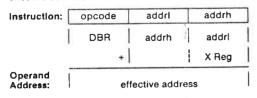
With this addressing mode, the 24-bit base address is pointed to by the sum of the second byte of the instruction and the Direct Register. The effective address is this 24-bit base address plus the Y Index Register.


9. Direct Indexed Indirect-(d,x)

This address mode is often referred to as Indirect,X. The second byte of the instruction is added to the sum of the Direct Register and the X Index Register. The result points to the low-order 16 bits of the effective address. The Data Bank Register contains the highorder 8 bits of the effective address.


10. Direct Indexed With X-d,x

The second byte of the instruction is added to the sum of the Direct Register and the X Index Register to form the 16-bit effective address. The operand is always in Bank 0.


11. Direct Indexed With Y-d,y

The second byte of the instruction is added to the sum of the Direct Register and the Y Index Register to form the 16-bit effective address. The operand is always in Bank 0.

12. Absolute Indexed With X-a,x

The second and third bytes of the instruction are added to the X Index Register to form the low-order 16 bits of the effective address. The Data Bank Register contains the high-order 8 bits of the effective address.

13. Absolute Long Indexed With X—al,x

The second, third and fourth bytes of the instruction form a 24-bit base address. The effective address is the sum of this 24-bit address and the X Index Register.

Operand Address:	l et	fective addre	955	I	
i i	+	l	X Reg	l	
	baddr	addrh	addrl	l	
Instruction:	opcode	addri	addrh	baddr	

14. Absolute Indexed With Y---a,y

The second and third bytes of the instruction are added to the Y Index Register to form the low-order 16 bits of the effective address. The Data Bank Register contains the high-order 8 bits of the effective address.

Instruction:	opcode	addrl	addrh
	DBR	addrh	addrl
	+		Y Reg
Operand Address:	ef	fective addr	ess

15. Program Counter Relative-r

This address mode, referred to as Relative Addressing, is used only with the Branch instructions. If the condition being tested is met, the second byte of the instruction is added to the Program Counter, which has been updated to point to the opcode of the next instruction. The offset is a signed 8-bit quantity in the range from -128 to 127. The Program Bank Register is not affected.

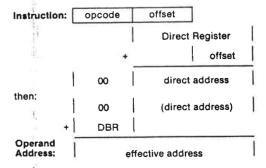
16. Program Counter Relative Long-rl

This address mode, referred to as Relative Long Addressing, is used only with the Unconditional Branch Long instruction (BRL) and the Push Effective Relative instruction (PER). The second and third bytes of the instruction are added to the Program Counter, which has been updated to point to the opcode of the next instruction. With the branch instruction, the Program Counter is loaded with the result. With the Push Effective Relative instruction, the result is stored on the stack. The offset is a signed 16-bit quantity in the range from -32768 to 32767. The Program Bank Register is not affected.

17. Absolute Indirect—(a)

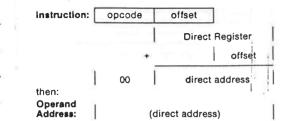
The second and third bytes of the instruction form an address to a pointer in Bank 0. The Program Counter is loaded with the first and second bytes at this pointer. With the Jump Long (JML) instruction, the Program Bank Register is loaded with the third byte of the pointer.

Instruction:	opcode	addrl	addrh		
Indirect Ad	dress =	00	addrh	addrl	1
New PC = (indirect addr	ess)			

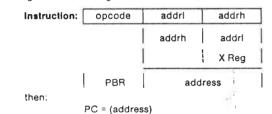

with JML:

New PC = (indirect address)

New PBR = (indirect address +2)


18. Direct Indirect—(d)

The second byte of the instruction is added to the Direct Register to form a pointer to the low-order 16 bits of the effective address. The Data Bank Register contains the high-order 8 bits of the effective address.


19. Direct Indirect Long—[d]

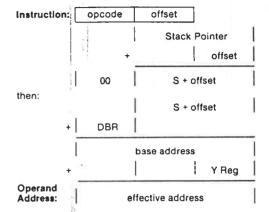
The second byte of the instruction is added to the Direct Register to form a pointer to the 24-bit effective address.

20. Absolute Indexed Indirect—(a,x)

The second and third bytes of the instruction are added to the X Index Register to form a 16-bit pointer in Bank 0. The contents of this pointer are loaded in the Program Counter. The Program Bank Register is not changed.

21. Stack-s

Stack addressing refers to all instructions that push or puil data from the stack, such as Push, Pull, Jump to Subroutine, Return from Subroutine, Interrupts, and Return from Interrupt. The bank adress is always 0. Interrupt Vectors are always fetched from Bank 0.


22. Stack Relative-d,s

The low-order 16 bits of the effective address is formed from the sum of the second byte of the instruction and the Stack Pointer. The high-order 8 bits of the effective address is always zero. The relative offset is an unsigned 8-bit quantity in the range of 0 to 255.

Instruction	: [_	opcod	e	offset
			+	Stack Pointer
Operand Address:	1	00	Ī	effective address

23. Stack Relative Indirect Indexed-(d,s),y

The second byte of the instruction is added to the Stack Pointer to form a pointer to the low-order 16-bit base address in Bank 0. The Data Bank Register contains the high-order 8 bits of the base address. The effective address is the sum of the 24-bit base address and the Y Index Register.

24. Block Source Bank, Destination Bank-xyc

This addressing mode is used by the Block Move instructions. The second byte of the instruction contains the high-order 8 bits of the destination address. The Y index Register contains the low-order 16 bits of the destination address. The third byte of the instruction contains the high-order 8 bits of the source address. The X Index Register contains the low-order 16 bits of the source address. The C Accumulator contains one less than the number of bytes to move. The second byte of the block move instructions is also loaded into the Data Bank Register.

Instruction:	opcode	dstbnk	srcbnk	
- 4	1	dstbnk	- DBR	
Source Address:		scrbnk	X Reg	
Destination Address:		DBR	Y Reg	

Increment (MVN) or decrement (MVP) X and Y. Decrement C (if greater than zero), then $PC+3 \rightarrow PC$.

W65C802 and W65C816 Instruction Set-Alphabetical Sequence

DC	Add Memory to Accumulator with Carry
AND .	"AND" Memory with Accumulator
ASL .	Shift One Bit Left, Memory or Accumulator
BCC	Branch on Carry Clear (Pc = 0)
BCS	Branch on Carry Set (Pc = 1)
BEQ	Branch if Equal (Pz = 1)
BIT	Bit Test
ВМІ	Branch if Result Minus (PN = 1)
BNE	Branch if Not Equal (Pz = 0)
3PL	Branch if Result Plus ($PN = 0$)
BRA	Branch Always
BRK	Force Break
BRL	Branch Always Long
BVC	Branch on Overflow Clear (Pv ≈ 0)
BVS	Branch on Overflow Set (Pv = 1)
CLC	Clear Carry Flag
CLD	Clear Decimal Mode
CLI	Clear Interrupt Disable Bit
CLV	Clear Overflow Flag
CMP	Compare Memory and Accumulator
COP	Coprocessor
CPX	Compare Memory and Index X
CPY	Compare Memory and Index X
DEC	Decrement Memory or Accumulator by One
	Decrement Index X by One
DEX	Decrement Index X by One
DEY EOR	"Exclusive OR" Memory with Accumulator
INC	Increment Memory or Accumulator by One
INX	Increment Index X by One
INY	
JML	Jump Long
JMP	Jump to New Location
JSL	Jump Subroutine Long
JSR	Jump to New Location Saving Return Address
LDA	Load Accumulator with Memory
LDX	Load Index X with Memory
LDY	Load Index Y with Memory
LSR	Shift One Bit Right (Memory or Accumulator)
MVN	Block Move Negative
MVP	Block Move Positive
NOP	No Operation
ORA	"OR" Memory with Accumulator
PEA	Push Effective Absolute Address on Stack (or Push Immediate
	Data on Stack)
PEI	Push Effective Indirect Address on Stack (or Push Direct
	Data on Stack)

PER Push Effective Program Counter Relative Address on Stack

For alternate mnemonics, see Table 7.

Push Accumulator on Stack PHA Push Data Bank Register on Stack PHB Push Direct Register on Stack PHD Push Program Bank Register on Stack PHK PHP Push Processor Status on Stack PHX Push Index X on Stack Push Index Y on Stack PHY Pull Accumulator from Stack PLA Pull Data Bank Register from Stack PLB Pull Direct Register from Stack PLD Pull Processor Status from Stack PLP Pull Index X from Stack PLX Pull Index Y form Stack PLY REP **Reset Status Bits** Rotate One Bit Left (Memory or Accumulator) ROL Rotate One Bit Right (Memory or Accumulator) ROR Return from Interrupt RTI Return from Subroutine Long RTL **Return from Subroutine** RTS Subtract Memory from Accumulator with Borrow SBC SEC Set Carry Flag Set Decimal Mode SED Set Interrupt Disable Status SEL Set Processor Status Bite SEP Store Accumulator in Memory STA Stop the Clock STP Store Index X in Memory STX STY Store Index Y in Memory Store Zero in Memory STZ Transfer Accumulator to Index X TAX TAY Transfer Accumulator to Index Y Transfer C Accumulator to Direct Register TCD Transfer C Accumulator to Stack Pointer Register тcś Transfer Direct Register to C Accumulator TDĊ Test and Reset Bit TRB Test and Set Bit TSB Transfer Stack Pointer Register to C Accumulator TSC Transfer Stack Pointer Register to Index X TSX Transfer Index X to Accumulator ТХА Transfer Index X to Stack Pointer Register TXS Transfer Index X to Index Y TXY Transfer Index Y to Accumulator TYA түх Transfer Index Y to Index X Wait for Interrupt WAİ WDM **Reserved for Future Use** Exchange B and A Accumulator XBA

XCE Exchange Carry and Emulation Bits

Vector Locations

E = 1		E = 0	
OOFFFE,F IRQ/BRK	Hardware/Software	OOFFEE,F IRQ	Hardware
OOFFFC,D-RESET	Hardware	OOFFEC,D-(Reserved)	
OOFFFA.B NMI	Hardware	OOFFEA,B- <u>NMI</u>	Hardware
OOFFF8,9 -ABORT	Hardware	OOFFE8,9 ABORT	Hardware
OOFFF6.7 (Reserved)		OOFFE6,7 —BRK	Software
OOFFF4,5 -COP	Software	OOFFE4,5 —COP	Software

The VP output is low during the two cycles used for vector location access. When an interrupt is executed, D = 0 and I = 1 in Status Register P.

Opcode Matrix

M S																	N S
D	0	1	2	3	4	5	6	LSD 7	8	9	A	В	с	D	E	F	
0	BRKs 28	ORA (d.x) 2 6	COPs 2*8	OFIA d,s 2 * 4	TSB d 2 • 5	ORA d	ASL d 2 5	ORA [d] 2*6	PHPs 1 3	ORA #	ASL A		TSB a 3 [®] 6	ORA a 3 4	ASLa 36	ORA al 4 * 5	
1	BPLr 22	ORA (d),y 2 5	ORA (d) 2 • 5	ORA (d,s),y 2 * 7	TRB d 2 • 5	ORA d,x 2 4	ASL d,x 2 6	ORA [d],y 2 6	CLC i 1 2	ORA aly 3 4		TCS i 1 * 2	TRB a 3 6	ORA a,x 3 4	ASL a,x 3 7	ORA al.x 4 * 5	
2	JSRa 36	AND (d,x) 2 6	JSL al 4 * 8	AND d,s 2 * 4	BIT d 2 3	AND d 2 3	ROLd 25	AND [d] 2 * 6	PLPs 14	AND #	ROL A 1 2	PLD s 1 * 5	BITa 34	AND a 3 4	ROL a 3 6	AND al	
3	BMIr 22	AND (d),y 2 5	AND (d) 2 • 5	AND (d,s),y 2 * 7	BIT d,x 2 • 4	AND d,x 2 4	ROL d.x 2 6	AND [d],y 2 * 6	SEC i 1 2	AND a,y 3 4	DEC A	TSC i 1 * 2	BIT a,x 3 [•] 4	AND a,x 3 4	ROL a,x 3 7	AND al,x 4 * 5	
4	RTIs 17	EOR (d,x) 2 6	WDM 2 * 2	EOR d,s 2 * 4	MVP xyc 3 * 7	EOR d	LSR d 25	EOR [d] 2 * 6	PHAs 13	EOR # 2 2	LSR A 1 2	PHK s 1 * 3	JMPa 33	EOR a 34	LSR a 3 6	EOR al 4 * 5	
5	BVCr 2 2	EOR (d),y 2 5	EOR (d) 2 • 5	EOR (d.s),y 2 * 7	MVN xyc 3 * 7	EOR d,x 2 4	LSR d,x 2 6	EOR [d],y 2 * 6	CLI i 1 2	EOR a,y 3 4	PHY s 1 [•] 3	TCD i 1 * 2	JMP al 4 * 4	EOR a,x 3 4	LSR a,x 3 7	EOR al,x	
6	RTSs 16	ADC (d,x) 2 6	PER s 3 * 6	ADC d,s 2 * 4	STZ d 2°3	ADC d 2 3	ROR d 25	ADÇ [d] 2 * 6	PLAs 14	ADC #	ROR A	RTL s 1 * 6	JMP (a) 3 5	ADC a 3 4	ROR a 3 6	ADC ai 4*5	
7	BVSr 22	ADC (d),y 2 5	ADC (d) 2 5	ADC (d,s),y 2 7	STZ d,x 2 4	ADC d.x 2 4	ROR d,x 2 6	ADC [d],y 2 * 6	SELI 1 2	ADC aly 3 4	PLY s 1 • 4	TDC i 1 * 2	JMP (a,x) 3 • 6	ADC a,x 3 4	ROR a,x 3 7	ADC al,x	
8	BRAr 2 [®] 2	STA (d.x) 2 6	BRL rl 3 * 3	STA d,s 2 * 4	STY d 2 3	STA d 2 3	STX d 2 3	STA [d] 2 * 6	DEY i 1 2	8IT # 2 • 2	TXA i 1 2	PHB s 1 * 3	STY a 3 4	STA a 34	STX a 3 4	STA al 4 * 5	
9	BCCr 22	STA (d),y 2 6	STA (d) 2 • 5	STA (d,s),y 2 * 7	STY d,x 2 4	STA d,x 2 4	STX d,y 2 4	STA [d],y 2 6	TYA i 1 2	STA a,y 3 5	TXSi 12	TXY i 1 * 2	STZ a 3 [•] 4	STA a,x 3 5	STZ a,x 3 5	STA al,x 4 * 5	
A	LDY # 2 2	LDA (d,x) 2 6	LDX # 2 2	LDA d,s 2 * 4	LDY d 2 3	LDA d 2 3	LDX d 2 3	LDA [d] 2 * 6	TAY i 1 2	LDA # 2 2	TAXI 1 2	PLB s 1 * 4	LDY a 3 4	LDA a 34	LDX a 3 4	LDA ai 4 * 5	
в	BCS r 2 2	LDA (d),y 2 5	LDA (d) 2 • 5	LDA (d,s),y 2 * 7	LDY d,x 2 4	LDA d,x 2 4	LDX d,y 2 4	LDA [d],y 2 6	CLVI 1 2	LDA a,y 3 4	TSXI 1 2	TYX1 1*2	LDY a,x 3 4	LDA a,x 3 4	LDX a,y 3 4	LDA al.x 4 * 5	
с	CPY # 2 2	CMP (d.x) 2 6	REP # 2*3	CMP d,s 2 * 4	CPY d 2 3	CMP d 2 3	DEC d 2 5	CMP [d] 2 * 6	INY i 1 2	CMP # 2 2!	DEX i 1 2	WALI 1 3	CPY a 3 4	CMPa 34	DEC a 3 6	CMP al 4 * 5	
D	BNEr 22	CMP (d),y 2 5	CMP (d) 2 • 5	CMP (d,s),y 2 * 7	PEIs 2 [★] 6	CMP d,x 2 _4	DEC d,x 2 6	CMP [d],y 2 * 6	CLD i 1 2	CMP a,y 3 4	PHX s 1 [•] 3	STP i 1 • 3	JML (a) 3 * 6	CMP a,x 3 4	DEC a,x 3 7	CMP al,x 4 * 5	
E	CPX # 2 2	SBC (d,x) 2 6	SEP # 2*3	SBC d,s 2 * 4	CPX d 2 3	SBC d 2 3	INC d 2 5	SBC [d] 2 * 6	INX i 1 2	SBC # 2 2	NOP i 1 2	XBA i 1 * 3	CPX a 3 4	SBCa 34	INC a 3 6	SBC al 4 * 5	
F	BEQ r 2 2	SBC (d),y 2 5	SBC (d) 2 • 5	SBC (d,s),y 2 * 7	PEA s 3 * 5	SBC d,x 2 4	INC d,x 2 6	SBC [d],y 2 * 6	SED i 1 2	SBC a,y 3 4	PLX s 1 • 4	XCE i 1 * 2	JSR (a,x) 3 * 6	SBC a,x 3 4	INC a,x 3 7	SBC al,x 4 * 5	
_	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F	ľ

symbol	addressing mode	symbol	addressing mode
#	immediate	[d]	direct indirect long
A	accumulator	[d],y	direct indirect long indexed
r	program counter relative	a	absolute
rl	program counter relative long	a,x	absolute indexed (with x)
Ť –	implied	a,y	absolute indexed (with y)
s	stack	al	absolute long
d	direct	al,x	absolute long indexed
d,x	direct indexed (with x)	d,s	stack relative
d,y	direct indexed (with y)	(d,s),y	stack relative indirect indexed
(d)	direct indirect	(a)	absolute indirect
(d,x)	direct indexed indirect	(a,x)	absolute indexed indirect
(d),y	direct indirect indexed	xyc	block move

Op Code Matrix Legend

ï

INSTRUCTION MNEMONIC	★ = New W65C816/802 Opcodes ● = New W65C02 Opcodes	ADDRESSING MODE
BASE NO. BYTES	Blank = NMOS 6502 Opcodes	BASE NO. CYCLES

1.1

Operation,	Operation	Codes, an	d Status	Register
Operation,	Operation	Coues, an	a otatas	riegiotei

MNE-				_				(d).y	(d),y	(x'p)	d,x	d,y	a,x	al,x	a,y					-	(x'E)		s'D	(d,s).y	xyc		ST/	ATUS	3	DE 2 1			MNE- MONIC
NONIC		*		100	P	4	-		-	-	-	_	-	_	_		16		- i .	P .				-			-	B	-		_	E=	
ADC AND		1 69 29	2 6D 2D	3 6F 2F	4 65 25	5	6	7 71 31	8 77 37	61	75 35		7D 3D	7F	79 39	15	10	-	-	67		1	3	73 33		-	v .			. Z			ADC AND ASL
ASL BCC BCS	C 15/7 0 - 0 BRANCH IF C = 0 BRANCH IF C = 1		OE		06	0A					16		١E		_	90 B0										2			÷.,	: <u>-</u>	•		BCC BCS BEQ
BEQ BIT BMI BNE BPL	BRANCH IF Z = 1 AAM (NOTE 1) BRANCH IF N = 1 BRANCH IF Z = 0 BRANCH IF N = 0	89	2C	-	24						34		30			F0 30 D0 10										м,) :	Å.		* * * * *	Ż			BIT BMI BNE BPL
BRA BRK BRL BVC BVS	BRANCH ALWAYS BREAK (NOTE 2) BRANCH LONG ALWAYS BRANCH IF V = 0 BRANCH IF V = 1															80 50 70	82					00					••••	•		i :		• *	BRA BRK BRL BVC BVS
CLC CLD CLI CLV CMP	0 - C 0 - D 0 - 1 0 - V A-M	C9	CD	CF	C5		18 D8 58 B8	D1	D7	C1	D5		DD	DF	D9				D2	C7			С3	D3		· · · · N	: ò		ò	ò i	0 2 C		CLC CLD CLI CLV CMP
COP CPX CPY DEC DEX	CO-PROCESSOR X-M Y-M DECREMENT X-1-X	EO			E4 C4		CA				D6		DE			100 - 200						02				ZZZZ	•••••	· · · · · ·	0	1		*	COP CPX CPY DEC DEX
DEY EOR INC INX INY	Y-1-Y AVM - A INCREMENTS X+1-X Y+1-Y	49	4D EE		45 E6		88 E8 C8	51	57	41	55 F6		5D FE	5F	59				52	47			43	53		ZZZZZ	51 F.						DEY EOR INC INX INY
JML JMP JSL JSR LDA	JUMP LONG TO NEW LOC. JUMP TO NEW LOC. JUMP LONG TO SUB. JUMP TO SUB. M - A	AS	40 20 40	22	2	5		B1	B7	A1	85		вD	BF	89			DC 6C	B2		7C FC	A3	B3			· · · Z	:	: :	•••••	-	ż	*	JML JMP JSL JSR LDA
LDX LDY LSR MVN MVP	M - X M - Y 0 - <u>15/7</u> 0] - C M - M BACKWARD M - M FORWARD	A2 AC			A6 46	ų					B4 56	86	BC 5E		BE										54 44	220	•••••				Z Z Z	**	LDX LDY LSR MVN MVP
NOP ORA PEA PEI	NO OPERATION AVM - A Mpc + 1, Mpc + 2 - Ms - 1, Ms S - 2 - S M(d), M(d + 1) - Ms - 1, Ms	09	9 00	0	05		EA	11	17	01	15		1D	1F	19	11111			12	07		F4 D4	03	13		Ň.	10000	: :		÷	ż .	*	NOP ORA PEA PEI
PER	S - 2 - S Mpc + rl, Mpc + rl + 1 → Ms - 1, Ms S - 2 - S															1						62 48		L		•	-	•	- 1	÷	•	*	PER
PHA PHB PHD PHK PHP	$\begin{array}{c} A - Ms, S - 1 - S \\ DBR - Ms, S - 1 - S \\ D - Ms, Ms - 1, S - 2 - S \\ PBR - Ms, S - 1 - S \\ P - Ms, S - 1 - S \end{array}$															1900 - S						8B 0B 4B 08						: :		:		**	PHB PHD PHK PHP
PHX PHY PLA PLB PLD	X Ms, S - 1 S Y Ms, S - 1 S S + 1 S, Ms A S + 1 S, Ms DBR S + 2 S, Ms 1, Ms D																					DA 5A 68 AB 2B					:	:		_	ż	• **	PHX PHY PLA PLB PLD
PLP PLX PLY REP ROL	$ \begin{array}{c} S + 1 - S, MS - P \\ S + 1 - S, MS - X \\ S + 1 - S, MS - Y \\ MAP - P \\ \hline \\$	c	2 2	E	2	6 2/					36		3E									28 FA 7A				Z Z Z Z	v	M 2	¢Ď	ì	z (z (z (PLP PLX PLY REP ROL
ROR RTI RTL RTS	C - 15/7 0 RTRN FROM INT. RTRN FROM SUB. LONG RTRN SUBBROUTINE A - M - C - A		6		F E			FI	F	E	76 F5		76		F9				F2	E7		40 6B 60	E3	F3		1		м́з ÷		8		*	ROR RTI RTL RTS SBC
SBC SED SEI SEP STA	1 - C 1 - D 1 - D 1 - I MVP - P A - M	E	2	D 8			38 F8 78		97				90							87			83	93		N	v	M	8 - a	i	ż	1	SEC SED SEI SEP STA
STP STX STY STZ TAX	$\begin{array}{c} \text{STOP} (1 - \phi 2) \\ \text{X} - \text{M} \\ \text{Y} - \text{M} \\ \text{Y} - \text{M} \\ \text{OO} - \text{M} \\ \text{A} - \text{X} \end{array}$		8 8 9	E	886	6	DE	3		T	94 74	96	9E	ľ												· · · · N	••••	:		* *** ****	ż	•	STP STX STY STZ TAX
TAY TCD TCS TDC TRB	A - Y C - D C - S D - C		1	c	,	4	AI 58 18 78	8																		ZZ ZZ		:			zz żz	***•	TCS TDC TRB
TSB TSC TSX TXA TXS	AVM - M S - C S - X X - A X - S			c		4 3 8 8 9	A																			. 222 .		•••••			ZZ .	*	TSX TXA TXS
TXY TYA TYX WAI WDM	X - Y Y - A Y - X 0 - RDY NO OPERATION (RESERVED)	Í				C	B B B B 2																			222	1	10.00		••••		* * * *	TYA TYX WAI WDA
XBA XCE	8 — A C — E	T	1	1		EF	B	Τ			1		T		T		Τ						Γ			N			• •		Z	Ė *	

vores: 1. Bit immediate N and V flags not affectéd, When M = 0, M15 → N and M14 →V, 2. Break Bit (B) in Status register indicates hardware or software break.

Detailed Instruction Operation

									Detaile	a inst	rucu	on Operation								
	ADDRESS MODE		CYCLE	VP,	ME, V			DORESS BUS		R/W		ADDRESS MODE	¢		VP,				ADDRESS BUS	
	Immediate # (LDY,CPY,CPX,LDX,ORA,		1.	1	1			PBR,PC PBR,PC+1	Op Code IDL	1		Direct Indirect Indexed (d),y (ORA,AND,EOR,ADC,		1. 2.	1	1	0	1	PBR.PC PBR.PC+1	Op Code DO
	AND,EOR,ADC,BIT,LDA,	(1)(8)	2a.	i	1			PBR.PC+2	IDH	1		STA,LDA,CMP,SBC)	(2)	2a.	1	1	0	0	PBR,PC+1	10
	CMP,SBC REP,SEP)											(8 Op Codes) (2 bytes)		3. 4.	1	1	;	0	0,D+D0 0,D+D0+1	AAL
	(14 Op Codes) (2 and 3 bytes)												(4)	4a.	î.	1	ò	ŏ	DBR,AAH,AAL+	
	(2 and 3 cycles)							1						5.	1	1	1	0	DBR.AA+Y	Data Low
	Absolute a		1.	1	1			PBR.PC	Op Code	1			(1)	5a.	1	1	!	0	DBR,AA+Y+1 PBR,PC	Data High Op Code
	(BIT,STY,STZ,LDY, CPY,CPX,STX,LDX,		2. 3.	1	1			PBR,PC+1 PBR,PC+2	AAL AAH	1		Direct Indirect Indexed Long [d],y		1. 2.	1	1	0	1	PBR,PC+1	DO
	ORA,AND,EOR,ADC,		4.	1	1	1	0 (DBR.AA	Data Low	1/0		(ORA,AND,EOR,ADC,	(2)	2a.	1	1	0	0	PBR,PC+1	10
	STA,LDA,CMP,SBC)	(1)	4a,	1	1	1	0 (DBR,AA+1	Data High	1/0		STA,LDA,CMP,SBC) (8 Op Codes)		3. 4,	1	1	1	0	0,D+DO 0,D+DO+1	AAL AAH
	(18 Op Codes) (3 bytes)											(2 bytes)		5.	1	1	i	õ	0.D+DO+2	AAB
	(4 and 5 cycles)							1				(6,7 and 8 cycles)		6.	1	1	1	0	AAB, AA+Y	Data Low
2b,	Absolute (R-M-W) a		1.	1	1	1	1 F	PBR,PC	Op Code	1			(1)	6a.	1	1	1	0	AAB,AA+Y+1	Data High
	(ASL.ROL,LSR,ROR		2. 3.	1	1	. C. T		PBR.PC+1 PBR.PC+2	AAL	1		Direct Indexed Indirect (d,n) (ORA,AND,EOR,ADC,		1. 2.	1	1	0	1	PBR,PC PBR,PC+1	Op Code DO
	DEC,INC,TSB,TRB)		4.	1	ò			DBR,AA	Data Low	1		STA, LDA, CMP, SBC}	(2)	2a.	i.	i	0	o	PBA,PC+1	10
	(6 Op Codes)	(1)	4a,	1	0			DBR.AA+1	Dala High	1		(8 Op Codes)		3.	1	1	0	0	PBR,PC+1	10
	(3 bytes) (6 and 8 cycles)	(3) (1)	5. 6a,	1	0			DBR,AA+1 DBR,AA+1	IO Dala High	1		(2 bytes) (6,7 and 8 cycles)		4. 5.	;	1	1	0	0,D+DO+X 0,D+DO+X+1	AAL AAH
	(o and b cycles)	0	6.	÷	ŏ			DBR AA	Data Low	õ		(0). 0.000,000,000,		6.	i	1	1	ō	DBR,AA	Data Low
2c.	Absolute (JUMP)		1.	1	1	1		PBR,PC	Op Code	3			(1)	6a.	1	1	1	0	DBR,AA+1	Data High
	(JMP)(4C)		2.	1	1			PBR,PC+1	NEW PCL	1		Direct,X d,x (BIT,STZ,STY,LDY,		1.	1	1	10	1	PBR.PC PBR.PC+1	Op Code DO
	(1 Op Code) (3 bytes)		3. 1.	1	1	0		PBR, PC+2 PBR, NEW PC	NEW PCH Op Code	1		ORA,AND,EOR,ADC,	(2)	2. 2a.	1	1	0	ò	PBR,PC+1	10
	(3 cycles)			<u>.</u>	102	×.	10	01, 1121110	00000	105		STA,LDA,CMP,SBC)	\- /	З.	1	1	0	0	PBR.PC+1	10
2d.	Absolute (Jump to		1.3	1	1	3		PBR,PC,	Op Code	1		(11 Op Codes) (2 bytes)	(1)	4. 4a.	1	1	1	0	0,D+DO+X 0,D+DO+X+1	Data Low Data High
	subroutine) a		2.	1	1	0		PBR,PC+1	NEW PCL	1		(4,5 and 6 cycles)	(0)	48.	2	0.42	2.61	v	0,0.00.00	Data Lingti
	(JSR) (1 Op Code)		3. 4.	1	4	0		PBR,PC+2 PBR,PC+2	NEW PCH IO	1	10b.	Direct_X(R-M-W) d,x		1.	1	1	1	1	PBR,PC	Op Code
	(3 bytes)		5.	1	1	1	0	0,S	PCH	0		(ASL,ROL,LSR,ROR,		2.	1	1	0	1	PBR.PC+1	DO
	(6 cycles)	21	6.	1	1	1		0,S-1 PBR,NEW PC	PCL Next On Code	0		DEC.INC) (6 Op Codes)	(2)	2a. 3.	1	;	0	0	PBR,PC+1 PBR,PC+1	10 10
	(different order from N650)	2)	1			3			Next Op Code			(2 byles)		4.	i	ò	1	ŏ	0,D+DO+X	Data Low
Ja.	Absolute Long al (ORA,AND,EOR,ADC		2	ł	1	0		PBR,PC PBR,PC+1	Op Code AAL	1			(1)	4a.	1	0	1	0	0.D+DO+X+1	Data High
	STA,LDA,CMP,SBC)		3	1	1	0	1	PBR,PC+2	AAH	1			(3) (1)	5. 6a.	1	0	0	0	0,D+DO+X+1 0,D+DO+X+1	IO Data High
	(8 Op Codes) (4 bytes)		4_ 5_	1	;	0		PBR.PC+3 AAB.AA	AAB Data Low	1			111	6.	ŝ.	ő	i	õ	0,D+DO+X	Data Low
	(5 and 6 cycles)	(1)	5a.	÷.	÷	1		AAB,AA+1	Data High	1/0		Direct, Y d,y		1.	1	1		1	PBR.PC	Op Code
зь.	Absolute Long (JUMP) al	. 3	1.	1	1	1		PBR.PC	Op Code	1		(STX.LDX)		2.	1	1	0	1	PBA,PC+1	DO
	(JMP)		2	1	1	0		PBR.PC+1	NEW PCL	1		(2 Op Codes) (2 bytes)	(2)	2a. 3.	1	1	0	0	PBR,PC+1 PBR,PC+1	10
	(1 Op Code) (4 bytes)		3_ 4_		;	0		PBR.PC+2 PBR.PC+3	NEW PCH NEW BR	1		(4,5 and 6 cycles)		4.	1	1	ĩ	õ	0,D+DO+Y	Data Low
	(4 cycles)		1.	i	i	ĩ		NEW PBR,PC	Op Code				(1)	4a.	1	1	1	0	0,D+DO+Y+1	Data High
										1		Absolute,X a,x (BIT,LDY,STZ,		1. 2.	1	1	10	1	PBR.PC PBR.PC+1	Op Code AAL
2.	Abastuta Lana Chumana							000.00	On Code	-		ORA,AND,EOR,ADC,		2. 3.	4	1	0	1	PBR,PC+2	AAH
30	Absolute Long (Jump to Subroutine Long) al		1.	1	1	0		PBR,PC PBR,PC+1	Op Code NEW PCL	1		STA,LDA,CMP,SBC)	(4)	3a.	1	÷.	ō	0	DBR,AAH,AAL	XLIO
	(JSL)		3_	1	1	0	1	PBR,PC+2	NEW PCH	1		(11 Op Codes) (3 bytes)	(1)	4. 4a.	1	1		0	DBR,AA+X DBR,AA+X+1	Data Low Data High
	(1 Op Code) (4 bytes)		4 5	1	;	0		0,S 0,S	P8A IO	0		(4,5 and 6 cycles)	19	Ψ Δ .				•	bun,corari	Cara Lingit
	(7 cycles)		6,		1	õ		PBR.PC+3	NEW PBR	1		Absolute,X(R-M-W) a,x		1.	1	1	1	1	PBR,PC	Op Code
			7.	1	1	1	0	0,S-1	PCH	0		(ASL,ROL,LSR,ROR,		2.	1	1	0	1	PBR,PC+1	AAL
			8. 1.	1	1	;		0.S-2 NEW PBR.PC	PCL Next Op Code	0		DEC,INC) (6 Op Codes)		3. 4.	1	1	0	ò	PBR,PC+2 DBR,AAH,AAL	
4.9	Direct d		τ.			1		PBR.PC	Op Code	1		(3 bytes)		5.	1	ò	1	õ	DBR,AA+X	Data Low
40-	(BIT,STZ,STY,LDY,		2	1	1	ò		PBR,PC+1	DO	1		(7 and 9 cycles)	(1)		1	0	1	0	DBR,AA+X+1	Dats High
	CPY,CPX,STX,LDX,	(2)	2a_	1	1	0		PBR,PC+1	10	1			(3)		1	0	0	0	DBR,AA+X+1 DBR,AA+X+1	IO Data High
	ORA_AND_EOR,ADC, STA_LDA,CMP,SBC)	(1)	З. За.	1	;	1		0,D+DO 0,D+DO+1	Dala Low Dala High	1/0 1/0				7.	1	ő	÷	ŏ	DBR,AA+X	Data High Data Low
	(18 Op Codes)	1.4	Ja.				0	0,0+00+1	Data riigii	170	#13 .	Absolute Long,X al,x		1.	1	1	1	1	PBR,PC	Op Code
	(2 byles)											(ORA, AND, EOR, ADC,		2.	1	1	0	1	PBR,PC+1	AAL
	(3,4 and 5 cycles)				225			000 00	0-0-1-	121		STA,LDA,CMP,SBC) (8 Op Codes)		3. 4.	1	1	0	1	PBR,PC+2 PBR,PC+3	AAH AAB
40	Direct (R-M-W) d (ASL,ROL,LSR,ROR		1.		;	1		PBR.PC PBR.PC+1	Op Code DO	1		(4 bytes)		5.	i	i	1	ò	AAB,AA+X	Date Low
	DEC,INC,TSB,TAB)	(2)	2a	î.	1	o		PBR,PC+1	10	1		(5 and 6 cycles)	(1)	5a.	1	1	1	0	AAB,AA+X+1	Data High
	(6 Op Codes)	(1)	3.	1	0	1		0,D+DO	Dala Low	1	14	Absolute,Y a.y		1.	1	1	1	1	PBR.PC	Op Code
	(2 bytes) (5,6,7 and 8 cycles)	(1) (3)	Ja 4	1	0	0		0_D+DO+1 0,D+DO+1	Data High IO	-		(LDX,ORA,AND,EOR,ADC, STA,LDA,CMP,SBC)		2. 3.	;	1	00	;	PBR.PC+1 PBR.PC+2	AAL AAH
		(1)	5a.	1	0	1	0	0,D+DO+1	Data High	0		(9 Op Codes)	(4)	3a.	i	i	ŏ	0	DBR, AAH, AAL	+ YL IO
_			5.	1	0	1		0,D+DO	Data Low	0		(3 bytes) (4,5 and 6 cycles)	(1)	4.	1	1	1	0	DBR,AA+Y	Data Low
5.	Accumulator A (ASL, INC, ROL, DEC, LSR, F	10P	1. 2.	1	1	T O		PBR,PC PBR,PC+1	Op Code IO	;		(4,5 and 6 cycles) Relative r	(1)	4a. 1.	1	1	1	0	DBR,AA+Y+1 PBR,PC	Data High Op Code
	(6 Op Codes)		6 .	÷		Ĭ		,		92		(BPL.BMI, BVC, BVS, BCC,		2.	1	;	0	-	PBR,PC+1	Offset
	(1 byte)											BCS.BNE.BEQ.BRA)	(5)	2a.	1	1	0	0	PBR.PC+1	10
6-	(2 cycles) Implied I		3 4	2				DAD DC	On Costs	1.01		(9 Op Codes) (2 bytes)	(6)	2b. 1.	1	;	0	0	PBR,PC+1 PBR,PC+Offset	IO Op Code
08.	(DEY, INY, INX, DEX, NOF		1.	1	1	1 0		PBR,PC PBR,PC+1	Op Code IO	1		(2,3 and 4 cycles)		<u>.</u>		8	10	3	1 01,101010100	
	XCE, TYA, TAY, TXA, TXS,		-	÷.		č	1			· •	# 16;	Relative Long rl		1.	1	1	1	1	PBR,PC	Op Code
	TAX, TSX, TCS, TSC, TCD,											(BRL)		2.	1	1	0	1	PBR,PC+1	Offset Low
	TDC,TXY,TYX,CLC,SEC, CLI,SEI,CLV,CLD,SED)											(1 Op Code) (3 bytes)		3. 4.	1	1	0	0	PBR,PC+2 PBR,PC+2	Offset High
	(25 Op Codes)											(4 cycles)		1,	1	i	ĩ	ĩ	PBR,PC+Offse	
	(1 byte) (2 cycles)							2			17a,	Absolute Indirect (a)		1.	1	1	1	1	PBR,PC	Op Code
161-	(2 cycles) Implied I		1.	÷.	1	1	1	PBR,PC	On Code	e e		(JMP) (1 Op Code)		2.	1	1	0	1	PBR,PC+1	AAL
u0,	(XBA)		2.	;	-	0		PBR.PC+1	Op Code IO	1		(1 Op Code) (3 byles)		3, 4.	1	1	0	1	PBR,PC+2 0,AA	AAH NEW PCL
	(1 Op Code)		3.	1	1	ō		PBR,PC+1	10	÷0		(5 cycles)		5,	- i	i	1	ŏ	0,AA+1	NEW PCH
	(1 byte) (3 cycles)													5	1	۱	1	1	PBR,NEW PC	Op Code
								RDY			#17b,	Absolute Indirect (a)		1.	1	1	1	1	PBR.PC	Op Code
6c,	Wait For Interrupt							<i>2</i>				(JML)		3.	-	;	0	1	PBA,PC+1 PBA,PC+2	AAL AAH
	(WAI) (1 Op Code)	(9)	1.	1	1	1		1 PBR.PC 1 PBR.PC+1	Op Code	1		(1 Op Code)		4.	1	1	1	0	0,AA	NEW PCL
	(1 byle)		3.	1	1	0		1 PBR.PC+1 0 PBR.PC+1	10 10	1		(3 bytes)		5. 6.	1	1	1	0	0,AA+1	NEW PCH
		Q,NMI		1	1	1		1 PBR.PC+1	IRQ(BRK)	i		(6 cycles)		b. 1.	1	1	1	0	0,AA+2 NEW PBR,PC	NEW PBR Op Code
6d	Slop-The-Clock				-						• 18.	Direct Indirect (d)		1.	1	1	1	1	PBR.PC	Op Code
	(STP) (1 Op Code)		12	1	1	0		1 PBR.PC 1 PBR.PC+1	Op Code IO	1	-	(ORA, AND, EOR, ADC,		2.	1	1	0	1	PBR,PC+1	DO
	(1 byte)	RES=1	3_		1	0	Ó	1 PBR,PC+1	10	i		STA,LDA,CMP,SBC) (8 Op Codes)	(2)	2a. 3.	1	1	0	0	PBR,PC+1 0,D+DO	
	(3 cycles)	AES=0		1	1	0		1 PBR.PC+1	RES(BRK)	1		(2 bytes)		4	÷	i	÷	0	0,D+DO+1	AAH
			10		1	0	0	1 PBR,PC+1	RES(BRK)	1				5.	- 2		1	ō		
		RES=0 RES=1			1	0	0	1 PBR.PC+1	RES(BRK)	i		(5,6 and 7 cycles) 20	(1)		- 1	1	i	ő	DBR.AA DBR.AA+1	Data Low Data Low

Detailed Instruction Operation (continued)

	ADDRESS MODE		YCLE	VP. N	π. v	DA.	VPA	ADDRESS BUS	DATA BUS R/	W
* 19	Direct Indirect Long [d]		1.	1	1	1	1	PBR_PC	Op Code 1	
	(ORA AND EOR ADC STA LDA,CMP,SBC)	(2)	2. 2a	1	1	0	1	PBR.PC+1 PBR.PC+1	DO 1 IO 1	
	(8 Op Codes)	,_,	З.	1	1	1	0	0,D+D0	AAL 1 AAH 1	
	(2 bytes) (6,7 and 8 cycles)		4. 5.	;	;	2	0	0.D+DO+1 0,D+DO+2	AAB 1	
		(1)	6. 6a.	1	1	1	0	AAB,AA AAB,AA+1	Data Low 1/ Data High 1/	
20a	Absolute Indexed Indirect (a,	(1) x)	1.	1	;	÷	1	PBR,PC	Op Code 1	
	(JMP)	,	2	1	1	0	1	PBR,PC+1	AAL 1	
	(1 Op Code) (3 bytes)		3.	1	;	0	1	PBR,PC+2 PBR,PC+2	AAH 1 IO 1	
	(6 cycles)		5,	1	1	0	1	PBR.AA+X PBR.AA+X+1	NEW PCL 1 NEW PCH 1	
			6. 1.	1	1	0	1	PBR NEW PC	Op Code 1	
* 20b	Absolute Indexed Indirect		1	1	1	1	1	PBR PC	Op Code 1	
	(Jump to Subroutine Indexed Indirect) (a,z)	\$	2.	1	1	0	1	PBR,PC+1 0,S	AAL 1 PCH 0	
	(JSR)		4	1	1	1	0	0,S-1 PBR PC+2	PCL C	
	(1 Op Code) (3 bytes)		5. 6	;	i	0	ò	PBR_PC+2	10	1
	(8 cycles)		7.	1	1	0	4	PBR,AA+X PBR,AA+X+1		1 1
			1.	i.	1	ĩ	1	PBR,NEW PC		1
218		(3)	1.	1	1	1	1	PBR,PC PBR,PC	10 10	1
	Interrupts) # (IRQ_NMLABORT,RES)	(7)	2.	1	1	1	0	0,S	PBR	0
	(4 hardware interrupts) (0 bytes)		4	;	1	1	0	0,S-1 0,S-2		0
	(7 and 8 cycles)		6.	1	1	1	0	0,5-3	P	0
			7. 8	0	;	1	0	0,VA 0,VA+1		1
			1.	1	1	٠	1	0,AAV		1
21b	Stack (Software Interrupts) s	(3)	1. 2.	;	1	1	1	PBR.PC PBR.PC+1		1
	(BRK,COP)	(7)	3.	1	1	1	0	0,S	PBR	0
	(2 Op Codes) (2 bytes)		4.	1	1	1	0	0.S-1 0,S-2		0
	(7 and 8 cycles)		6.	1	1	1	0	0,S-3 (COP L	atches) P	0
			7.	0	1	1	0	0,VA 0,VA+1	AAVL	ì
			1,	1	۱	1	1	0.AAV	Next Op Code	1
210	Stack (Return from Interrupt) #		2	;	1	0	1	PBR,PC PBR,PC+1	Op Code 10	;
	(RTI)	(3) 3.	1	1	0	0	PBR,PC+1	IO P	1
	(1 Op Code) (1 byte)		4.	;	;	1	0	0.S+1 0.S+2	PCL	i -
	(6 and 7 cycles) (different order from N6502)	(7)	6.	1	1	1	0	0.S+3 0.S+4	PCH PBB	1
	Interent order from Nosoz		١.	i	i	i	ĩ	PBR PC	New Op Code	1
21d	Stack (Return from		1.	1	;	1	1	PBR PC PBR PC+1	Op Code IO	1
	Subrouline) # (RTS)		3.	i	١	ō	0	PBR,PC+1	10	1
	(1 Op Code)		4.	1	;	1	0	0.S+1 0.S+2	PCL PCH	-
	(1 byte) (6 cycles)		6	1	1	0	0	0.5+2	10	1
±01-	Clearly (Deliver from		1.	1	1	1	1	PBR.PC PBR.PC	Op Code Op Code	
#216	 Stack (Return from Subroutine Long) # 		2.	1	1	0	0	PBR,PC+1	10	1
	(RTL) (1 Op Code)		3.	1	1	0	0	PBR_PC+1 0.S+1	IO NEW PCL	1
	(1 byle)		5.	1	1	1	0	0,5+2	NEW PCH NEW PBR	!
	(6 cycles)		6	1	;	1	0	0.S+3 NEW PBR,PC	Next Op Code	i.
21	f. Stack (Push) s		1.	1	1	1	1	PBR,PC	Op Code	;
	(PHP,PHA,PHY,PHX, PHD,PHK,PHB)	(1)	2. 3a.	;	1	0	0		IO Register High	;
	(7 Op Codes)	•	3.	1	1	1	0	0,S-1	Register Low	1
	(1 byte) (3 and 4 cycles)							÷.		
210	g, Stack (Pull) s		1.	1	1	1	1		Op Code IO	1
	(PLP,PLA,PLY,PLX,PLD,PLE (Different than N6502)	3)	2.3	;	1	00	ő	PBR,PC+1	10	1
	(6 Op Codes) (1 byte)	(1	4. 4a:	1	1	1	0		Register Low Register High	1
	(4 and 5 cycles)						10			
≜ 21/	h. Stack (Push Elfective		1.2.	;	1	0	;		Op Code DO	1
	Indirect Address) (PEI)	(2) 24.	1	1	0	0	PBR.PC+1	10	1
	(1 Op Code) (2 bytes)		3. 4.	;	1	1	0		AAL AAH	;
	(6 and 7 cycles)		5	1	1	1	0	0,5	AAH AAL	0
+21	i, Stack (Push Effective		6. 1.	1	1	1		0.S-1 PBR,PC	Op Code	1
-21	Absolute Address) #		2.	1	1	0	1	PBR,PC+1	AAL	;
	(PEA) (1 Op Code)		3.	;	;		1		AAH AAH	ò
	(3 byles)		5.	1	1				AAL	0
±21	(5 cycles) J. Stack (Push Elfective		1.	1	1	,	6.9	PBR.PC	Op Code	1
-2	Program Counter Relative		2.	1	1	0	6.5	PBR,PC+1	Offset Low	;
	Address) = (PER)		3.	1	1				Offset High IO	1
	(1 Op Code)		5.	1	1				PCH+OFF+ CARRY	0
	(3 bytes) (6 cycles)		6.	,	,	1		0.5-1	PCL+OFFSET	
#2	2 Stack Relative d,s		1	1	1			PBR.PC PBR.PC+1	Op Code SO	1
	(ORA, AND, EOR, ADL, STA LDA CMP, SDC)		З.	1	1	0) (PBR,PC+1	10	1
	(8 Op Codes) (2 bytes)	(1	4.)) 4a.	1	1			0 0,S+SO 0 0,S+SO+1	Data Low Data High	1/0 1/0
	(4 and 5 cycles)									

	-									-
	ADDRESS MODE	c	YCLE	VP, i	AL, V	DA.		ADDRESS BUS		/₩
# 23	Stack Relative Indirect		1.	1	1	1		PBR,PC	Op Code SO	1
	indexed (d,a),y (ORA,AND,EOR,ADC,		2. 3.	4	1	0		PBR,PC+1 PBR+PC+1	10	1
	STA,LDA,CMP,SDC)		4.	1	1	1		0,5+50	AAL	1
	(8 Op Codes)		5. 6.	1	;	1		0,S+SO+1 0,S+SO+1	AAH IO	1
	(2 bytes) (7 and 6 Cycles)		o. 7.	1	1	ĩ	õ	DBR,AA+Y	Data Low	1/0
	((1)	7a.	1	1	1	0	DBR,AA+Y+1		1/0
#24a.	Block Move Positive	[٦.	1	1	1	1	PBR,PC	Op Code	1
	(forward) ave		2.	;	1	0	1	PBR,PC+1 PBR,PC+2	DBA SBA	1
	(MVP) (1 Op Code)	N-2	3. 4.	1	1	1	ò	SBAX	Source Dala	÷.,
	(3 bytes)	Byte	5.	1	1	1	0	DBA,Y	Dest, Data	0
	(7 cycles)	C=2	6.	1	1	0	0	DBA,Y	10	1
	x = Source Address	l	7.	1	1	0	0	DBA,Y PBR.PC	IO Op Code	1
	y = Destination c =Number of Bytes to	Move -1	2.	1	÷.	ò	â.	PBR.PC+1	DBA	1
	x,y Decrement		3.	1	1	0	1	PBR,PC+2	SBA	1
	MVP is used when the	N-1	4. 5.	1	1	;	0	SBA,X-1 DBA,Y-1	Source Data Dest. Data	1
	destination start addres is higher (more positive		6.	- 2	1	ò	ŏ	DBA,Y-1	10	1
	than the source start a	1	7.	1	1	0	0	DBA,Y-1	10	1
			F1.	1	1	1	1	PBR.PC	Op Code	1
	FFFFFF		2.	1	1	0	1	PBR,PC+1 PBR,PC+2	DBA SBA	1
	Dest. Start	N Byte	4.	- ¥.	i	ĩ	ò	SBA X-2	Source Data	1
	Source Start	C=0	5.	1	1	1	0	DBA,Y-2	Dest, Data	0
	- Dest. End		6. 7.	;	1	0	0	DBA,Y-2 DBA,Y-2	10	1
	1 C-Source End		1.	-	1	1	1	PBR,PC+3	Next Op Code	1
			L							
#24b	Block Move Negative		Γ1.	3	1	1	1	PBR.PC	Op Code	1
	(backward) xyc		2	1	1	0	1	PBR.PC+1	DBA	1
	(MVN)	N-2	3.	1		0	1	PBR.PC+2 SBA.X	SBA Source Data	1
	(1 Op Code) (3 bytes)	Byte C=2	4.	1	1	1	0	DBA,Y	Dest. Dala	0
	(7 cycles)	0-1	6.	1	1	ó	ō	DBA,Y	10	1
	x = Source Address		7.	1	1	0	0	DBA,Y	10	1
	y = Destination	- Mount -1	Г.	1	1	1	1	PBR,PC	Op Code	1
	c = Number of Bytes t x,y increment	0.240	2.	1	1	0	1	PBR,PC+1	DBA	1
	FFFFFF	N-1	3.	1	- 2	0	0	PBR,PC+2	SBA Source Data	1
	Source End	Byte C=1	4.	;	1	-	ŏ	SBA,X+1 DBA,Y+1	Dest, Data	ò
		0	6.	1	1	0	0	DBA,Y+1	10	1
	Dest.End Source Start		7.	1	1	0	0	DBA,Y+1	10	1
	Dest. Start			1	1	1	1	PBR.PC	Op Code	;
	A STREET, STRE	N Byte	2	;	;	0	;	PBR.PC+1 PBR.PC+2	DBA SBA	
									Source Data	1
	000000		4.	1	1	1	0	SBA,X+2	300106 Date	
	000000 . MVN is used when th	C*0	4.	1	1	1	0	DBA,Y+2	Dest Data	0
	MVN is used when the destination start address	C+0 e ss	5. 6.	;	1	1 0	0	DBA,Y+2 DBA,Y+2	Dest Data iO	
	MVN is used when th destination start addre is lower (more negativ	C+0 e ss	5. 6. 7.	1	1	1	0	DBA,Y+2	Dest Data	1
	MVN is used when the destination start address	C+0 e ss	5. 6.	1 1 1 1 1 1	1 1	1 0 0	000	DBA,Y+2 DBA,Y+2 DBA,Y+2	Dest Dala IO IO	1
	MVN is used when th destination start addre is lower (more negative than the source start	C+0 e ss	5. 6. 7.	1 1 1 1 1 1	1 1	1 0 0	000	DBA,Y+2 DBA,Y+2 DBA,Y+2	Dest Dala IO IO	1
No	MVN is used when th destination start addre is lower (more negation than the source start address.)	C×0 esss ve)	5.6.7.1.	1 1 1 1 1	1 1 1	1 0 0 1	001	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3	Dest, Dala IO IO Nexi Op Code	01
No	MVN is used when th destination start addre is lower (more negatin than the aource start address. les: (1) Add 1 byte (for im	C+0 ess ve) mediate oni	5. 6. 7. 1.	1 1 1 1 1 1	1 1 1 1	1 0 1 1	001	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3	Dest, Dala IO IO Nexi Op Code	01
No	MVN is used when th destination start addre is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for di	C+0 e sss re) mediate oni rect register	5. 6. 7. 1.	1 1 1 1 1 0 0 DL) n	1 1 1 1 1 1 1 1 1	1 0 0 1 0 (1.e	0 0 1	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bil data), add 1 c	Dest, Dala IO IO Next Op Code	0 1 1 = 1
No	MVN is used when th destination start addre is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for dii (3) Special case for al	C=0 e sss ve) mediate onl rect register borting inst	5. 6. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	M=0 o DL) no	1 1 1 1 1 1 1 1 1	1 0 0 1 0 (1.e	0 0 1	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bil data), add 1 c	Dest, Dala IO IO Next Op Code	0 1 1 = 1
No	MVN is used when th destination start addre is lower (more negatin than the aource start address. (1) Add 1 byte (for im (2) Add 1 cycle for din (3) Special case for al PBR or DBR regis	C=0 e sss re) mediate onl rect register borting inst sters will be	s 6 7 1 1 ly) for low (ructio upda	1 1 1 1 DL) n 1 0 L) n 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 (1.e uai 0 ne las	0 0 1	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bil data), edd 1 c	Dest, Data IO IO Next Op Code sycle for M=0 or X aborted or the St	0 1 1 = 1
No	MVN is used when th destination start addre is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for di (3) Special case for al PBR or DBR regis (4) Add 1 cycle for in (2) Add 1 cycle for in	C=0 e ess rea) mediate onl rect register borting inst iters will be dexing acro	ly) for low (ructio upda	M=0 o DL) no led.	or X= ot eq s is th	1 0 1 0 (1,e ual 0 ne las	0 0 1 161 t cyc	DBA.Y+2 DBA.Y+2 DBA.Y+2 PBR,PC+3 bil data), add 1 c cle which may be write, or X=0, Wh	Dest, Data IO IO Next Op Code sycle for M=0 or X aborted or the St	0 1 1 = 1
No	MVN is used when th destination start addre is lower (more negatin than the source start address.)	C=0 e ess rea) mediate onl rect register borting inst sters will be dexing acro this cycle c	s f f f f f f f f f f f f f f f f f f f	M=0 o DL) no led.	or X= ot eq s is th	1 0 1 0 (1,e ual 0 ne las	0 0 1 161 t cyc	DBA.Y+2 DBA.Y+2 DBA.Y+2 PBR,PC+3 bil data), add 1 c cle which may be write, or X=0, Wh	Dest, Data IO IO Next Op Code sycle for M=0 or X aborted or the St	0 1 1 = 1
No	MVN is used when th destination start addre is lower (more negatin than the aource start address. (1) Add 1 byte (for im (2) Add 1 cycle for di PBR or DBR regit (4) Add 1 cycle for in emulation mode, (5) Add 1 cycle if brai	C=0 e sss ree) mediate onl rect register borting inst sters will be dexing acro this cycle c nch is taken	s 6 7 1 low (ructio upda oss pa ontain	M=0 o DL) ne I I I I I I I I I I I I I I I I I I I	t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 (1.e ual 0 ne las aries,	o 0 1 1 t cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c cle which may be write, or X=0, Wh	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
No	MVN is used when the destination start addres is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for di (3) Special case for al PBR or DBR regis (4) Add 1 cycle for brain (5) Add 1 cycle if brain (6) Add 1 cycle if brain	C+0 e sss ree) mediate onl rect register borting inst lers will be dexing acro this cycle c this cycle c his cycle c his cycle c	ly) for low (ructio upda oss pa ontair a scros	M=0 o DL) no n. Thi led. sge bo is inve	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 (1,e ual 0 ne las aries, iddre	o 0 1 1 t cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c cle which may be write, or X=0, Wh	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
No	MVN is used when th destination start addre is lower (more negatin than the aource start address. (1) Add 1 byte (for im (2) Add 1 cycle for di PBR or DBR regit (4) Add 1 cycle for in emulation mode, (5) Add 1 cycle if brai	C+0 sss rect register borting insti- iters will be dexing acro this cycle c nch is taken och is taken or 6502 emu	ly) for low (ructio upda oss pa ontair a scros	M=0 o DL) no n. Thi led. sge bo is inve	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 0 (1,e ual 0 ne las aries, iddre	o 0 1 1 t cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c cle which may be write, or X=0, Wh	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
No	MVN is used when th destination start addre is lower (more negatin than the source start address.)	C+0 ess re) mediate oni rect register borting inst ters will be dexing acro this cycle c nch is taken nch is taken nch is taken pro f602 emu EP.SEP.	ly) for low (ructio upda oss pa ontair acros	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
	MVN is used when th destination start addre is lower (more negatin than the source start address.)	C+0 ess re) mediate oni rect register borting inst ters will be dexing acro this cycle c nch is taken nch is taken nch is taken pro f602 emu EP.SEP.	ly) for low (ructio upda oss pa ontair acros	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
	MVN is used when th destination start addre is lower (more negatin than the source start address. (1) Add 1 byte (for im (2) Add 1 cycle for im (3) Special case for al PBR or DBR regis (4) Add 1 cycle for in emulgiton mode, (5) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle for in (9) Wait at cycle 2 for observiations:	C+0 ess re) mediale online recl register borting insti- biters will be dexing acret this cycle c nich is taken or 6502 emu EP.SEP. 2 cycles &I	ly) for low (ructio upda oss pa ontair acros	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
	MVN is used when th destination start addres is lower (more negatin than the source start address.)	C+0 ess ree) mediale onl rect register porting inst iters will be dexing acro this cycle c nch is taken nch is taken or 6502 emu EP.SEP. 2 cycles al Bank	ly) for low (ructio upda oss pa ontair acros	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
	MVN is used when th destination start addre is lower (more negatin than the source start address. (1) Add 1 byte (for im (2) Add 1 cycle for im (3) Special case for al PBR or DBR regis (4) Add 1 cycle for in emulgiton mode, (5) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle for in (9) Wait at cycle 2 for observiations:	C+0 e e sss re) mediate oni- reof register borting inst- tiers will be dexing acrt this cycle c nch is taken or 6502 emu EP.SEP. 2 cycles al Bank High	ly) for low (ructio upda oss pa ontair acros	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addre is lower (more negatin than the source start address.)	C+0 e e sss re) mediate onin recl register borting inst sters will be dexing acrt this cycle c nch is taken or 6502 emu EP.SEP. 2 cycles al Bank High Low Vector Hig	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for di (3) Special case for al PBR or DBR regis (4) Add 1 cycle if or al (5) Add 1 cycle if brai (6) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if or Al (9) Wait at cycle 2 for bireviations: AAB Absolute Address AAL Absolute Address AAVL Absolute Address	C+0 e e sss re) mediate onin recl register borting inst sters will be dexing acrt this cycle c nch is taken or 6502 emu EP.SEP. 2 cycles al Bank High Low Vector Hig	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for di (3) Special case for al PBR or DBR regist (4) Add 1 cycle for di (5) Add 1 cycle if brai (6) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (9) Wait at cycle 2 for bireviations: AAB Absolute Address AAL Absolute Address AAVL Absolute Address C Accumulator D Direct Register	C+0 ess ref) mediate online rect register borting insti- tars will be dexing acro this cycle c nich is taken or 6502 emit PS,SEP. 2 cycles al Bank High Low Vector Hig Vector Low	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.)	C+0 e e sss re) mediate online corting insti- tiers will be dexing acro this cycle c nch is taken nor 6502 em. 2 cycles al Bank High Low Vector Hig Vector Low Address	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addre is lower (more negatin than the source start address.)	C+0 e e sss re) mediate online corting insti- tiers will be dexing acro this cycle c nch is taken nor 6502 em. 2 cycles al Bank High Low Vector Hig Vector Low Address	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.)	C+0 iss ref) mediate online terre (register borting inst iters will be dexing acro this cycle c this cycle c this cycle c this cycle c ref is taken or 6502 emic P.SEP. 2 cycles al Bank Low Vector Hig Vector Low Address er	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for di (3) Special case for al PBR or DBR regis (4) Add 1 cycle for di (5) Add 1 cycle if brai (6) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (9) Wait at cycle 2 for bbreviations: AAB Absolute Address AAL Absolute	C+0 iss ref) mediate online terre (register borting inst iters will be dexing acro this cycle c dexing acro this cycle c this cycle c ref is taken or 6502 emic P.SEP. 2 cycles al Bank Low Vector Hig Vector Low Address er tigh .ow	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.)	C+0 iss ref) mediate online terre (register borting inst iters will be dexing acro this cycle c dexing acro this cycle c this cycle c ref is taken or 6502 emic P.SEP. 2 cycles al Bank Low Vector Hig Vector Low Address er tigh .ow	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when the destination start addres is lower (more negatin than the source start address.)	C+0 sss ref) mediale onli- rect register borting insti- tiars will be dexing acret this cycle c nch is taken or his taken or his taken or SSEP. 2 cycles al Bank High Low Vector Hig Vector Hig Vector Hig Nettor Solowing Address er high low h	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addre is lower (more negatin than the source start address.)	C+0 sss re) mediate online rect register borting insti- titers will be dexing acret this cycle c nch is taken or 6502 emu EP.SEP. 2 cycles al Bank High Low Vector Low Address er tign .ow n sgister	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when the destination start addres is lower (more negatin than the source start address.)	C+0 sss re) mediate online rect register borting insti- titers will be dexing acret this cycle c nch is taken or 6502 emu EP.SEP. 2 cycles al Bank High Low Vector Low Address er tign .ow n sgister	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addre is lower (more negatin than the source start address.)	C+0 ess rep) mediate onin rect register borting insti- tiers will be dexing acrt this cycle c nch is taken or 6502 emu EP.SEP. 2 cycles al Bank High Low Vector How Address er tigh ow n sgister	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when the destination start addres is lower (more negatin than the source start address.)	C+0 ess rep) mediate onin rect register borting insti- tiers will be dexing acrt this cycle c nch is taken or 6502 emu EP.SEP. 2 cycles al Bank High Low Vector How Address er tigh ow n sgister	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for di (3) Special case for al PBR or DBR regis (4) Add 1 cycle for di (3) Special case for al (6) Add 1 cycle if brai (6) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (9) Wait at cycle 2 for breviations: AAB Absolute Address AAH Absolute Address C Accumulator D Direct Register DBR Data Bank Regist DO Lincer Chesi DD Fract Offsel DD Internal Operatio P Status Register -M-W Reac-Modify-Wri S Stack Address SBA Source Bank Add SO Stack Offset	C+0 ess rep) mediate onin rect register borting insti- tiers will be dexing acrt this cycle c nch is taken or 6502 emu EP.SEP. 2 cycles al Bank High Low Vector How Address er tigh ow n sgister	5 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	M=0 o DL) ne n. Thi- led. ige bo is inve ss page i mode	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.)	C=0 e e sss rep) mediate online sss rep) mediate online ters will be dexing acro this cycle c dexing acro this cycle c taken nch is taken nch is taken nch is taken rof 6502 em EP.SEP. 2 cycles al Bank High Low Vector Hig Vector Hig Vector Low Address er tigh .ow n gister te	5. 6. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	M=0 o DL) nr. , Thi led. uge bo ss nvæ ss pag	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
At	MVN is used when th destination start addres is lower (more negatin than the source start address.) les: (1) Add 1 byte (for im (2) Add 1 cycle for di (3) Special case for al PBR or DBR regis (4) Add 1 cycle for di (3) Special case for al (5) Add 1 cycle if brai (6) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (7) Subtract 1 cycle i (8) Add 1 cycle if brai (9) Wait at cycle 2 for berwiations: AAB Absolute Address AAL Absolute Address AAL Absolute Address C Accumulator D Direct Register DBR Data Bank Regist DO Direct Offset IDL Immediate Data L IDL immediate Data L IDL immediate Data L IDL immediate Data K PC Program Counter -M-W Read-Modify-Wri S Stack Address x,y Index Registers ** New WSSCB16/db	C+0 sss ref) mediale onli- recl register borting insti- bitrs will be dexing acret this cycle con- this cycle co- ref 6502 emu EP.SEP. 2 cycles al Bank High Low Vector Low Address er tigh .ow n gister te Iress	5. 6. 7. 1. Iy) for low (ructio upda a crois a c	M=0 o DL) nr. , Thi led. uge bo ss nvæ ss pag	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
R	MVN is used when th destination start addres is lower (more negatin than the source start address.)	C=0 e e sss rep) mediate online sss rep) mediate online ters will be dexing acro this cycle c ters will be dexing acro this cycle c ters will be dexing acro this cycle c taken or 6502 em c f f f f f f f f f f f f f f f f f f f	5. 6. 7. 1. Iy) for low (ructio upda oniairon ter Nh h	M=0 o DL) nr. , Thi led. uge bo ss nvæ ss pag	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1
R	MVN is used when th destination start addres is lower (more negatin than the source start address.)	C=0 e e sss rep) mediate online sss rep) mediate online ters will be dexing acro this cycle c ters will be dexing acro this cycle c ters will be dexing acro this cycle c taken or 6502 em c f f f f f f f f f f f f f f f f f f f	5. 6. 7. 1. Iy) for low (ructio upda oniairon ter Nh h	M=0 o DL) nr. , Thi led. uge bo ss nvæ ss pag	t t t t t t t t t t t t t t t t t t t	1 0 0 1 0 (1,e las aries, ddre unda 1).	0 0 1 161 1 cyc or w sses	DBA,Y+2 DBA,Y+2 DBA,Y+2 PBR,PC+3 bit data), add 1 c :tle which may be write, or X=0, Wh -	Dest, Data IO Next Op Code ycle for M=0 or X aborted or the SI en X=1 or in the	0 1 1 = 1

Recommended W65C816 and W65C802 Assembler Syntax Standards

Directives

Assembler directives are those parts of the assembly language source program which give directions to the assembler; this includes the definition of data area and constants within a program. This standard excludes any definitions of assembler directives.

Comments

121.

An assembler should provide a way to use any line of the source program as a comment. The recommended way of doing this is to treat any blank line, or any line that starts with a semi-colon or an asterisk as a comment. Other special characters may be used as well.

The Source Line

Any line which causes the generation of a single W65C816 or W65C802 machine language instruction should be divided into four fields: a label field, the operation code, the operand, and the comment field.

The Label Field—The label field begins in column one of the line. A label must start with an alphabetic character, and may be followed by zero or more alphanumeric characters. An assembler may define an upper limit on the number of characters that can be in a label, so long as that upper limit is greater than or equal to six characters. An assembler may limit the alphabetic characters to upper-case characters if desired. If lower-case characters are allowed, they should be treated as identical to their upper-case equivalents. Other characters may be allowed in the label, so long as their use does not conflict with the coding of operand fields.

The Operation Code Field—The operation code shall consist of a three character sequence (mnemonic) from Table 3. It shall start no sooner than column 2 of the line, or one space after the label if a label is coded.

Many of the operation codes in Table 3 have duplicate mnemonics; when two or more machine language instructions have the same mnemonic, the assembler resolves the difference based on the operand.

If an assembler allows lower-case letters in labels, it must also allow lower-case letters in the mnemonic. When lower-case letters are used in the mnemonic, they shall be treated as equivalent to the upper-case counterpart. Thus, the mnemonics LDA, Ida, and LdA must all be recognized, and are equivalent.

In addition to the mnemonics shown in Table 3, an assembler may provide the alternate mnemonics shown in Table 6.

Alternate Mnemonics

Standard	Alias
BCC	BLT
BCS	BGE
CMP A	CMA
DEC A	DEA
INC A	INA
JSL	JSR
JML	JMP
TCD	TAD
TCS	TAS
TDC	TDA
TSC	TSA
XBA	SWA

JSL should be recognized as equivalent to JSR when it is specified with a long absolute address. JML is equivalent to JMP with long addressing forced.

The Operand Field—The operand field may start no sooner than one space after the operation code field. The assembler must be capable of at least twenty-four bit address calculations. The assembler should be capable of specifying addresses as labels, integer constants, and hexa-decimal constants. The assembler must allow addition and subtraction in the operand field. Labels shall be recognized by the fact that they start alphabetic characters. Decimal numbers shall be recognized as containing only the decimal digits 0...9. Hexadecimal constants shall be recognized by prefixing the constant with a "\$" character, followed by zero or more of either the decimal digits or the hexadecimal digits "A"..."F". If lower-case letters are allowed in the label field, then they shall also be allowed as hexadecimal digits.

All constants, no matter what their format, shall provide at least enough precision to specify all values that can be represented by a twenty-four bit signed or unsigned integer represented in two's complement notation.

Table 8 shows the operand formats which shall be recognized by the assembler. The symbol **d** is a label or value which the assembler can recognize as being less than \$100. The symbol **a** is a label or value which the assembler can recognize as greater the \$FF but less than \$10000; the symbol **a** is a label or value that the assembler can recognize as being greater than \$FFFF. The symbol EXT is a label which cannot be located by the assembler at the time the instruction is assembled. Unless instructed otherwise, an assembler shall assume that EXT labels are two bytes long. The symbols r and rl are 8 and 16 bit signed displacements calculated by the assembler.

Note that the operand does not determine whether or not immediate addressing loads one or two bytes; this is determined by the setting of the status register. This forces the requirement for a directive or directives that tell the assembler to generate one or two bytes of space for immediate loads. The directives provided shall allow separate settings for the accumulator and index registers.

The assembler shall use the <, >, and ^ characters after the # character in immediate address to specify which byte or bytes will be selected from the value of the operand. Any calculations in the operand must be performed before the byte selection takes place. Table 7 defines the action taken by each operand by showing the effect of the operator on an address. The column that shows a two byte immediate value show the bytes in the order in which they appear in memory. The coding of the operand is for an assembler which uses 32 bit address calculations, showing the way that the address should be reduced to a 24 bit value.

Byte Selection Operator

Operand	One Byte Result	Two Byte Result
#\$01020304	04	04 03
#<\$01020304	04	04 03
#>\$01020304	03	03 02
#^\$01020304	02	02 01

In any location in an operand where an address, or expression resulting in an address, can be coded, the assembler shall recognize the prefix characters <, |, and >, which force one byte (direct page), two byte (absolute) or three byte (long absolute) addressing. In cases where the addressing mode is not forced, the assembler shall assume that the address is two bytes unless the assembler is able to determine the type of address is two dresses shall be truncated without error if an addressing mode is forced which does not require the entire value of the address. For example,

LDA \$0203 LDA \$010203

are completely equivalent. If the addressing mode is not forced, and the type of addressing cannot be determined from context, the assembler shall assume that a two byte address is to be used. If an instruction does not have a short addressing mode (as in LDA, which has no direct page indexed by Y) and a short address is used in the operand, the assembler shall automatically extend the address by padding the most significant bytes with zeroes in order to extend the address to the length needed. As with immediate addressing, any expression evaluation shall take place before the address is selected; thus, the address selection character is only used once, before the address of expression.

The! (exclamation point) character should be supported as an alternative to the | (vertical bar).

A long indirect address is indicated in the operand field of an instruction by surrounding the direct page address where the indirect address is found by square brackets; direct page addresses which contain sixteenbit addresses are indicated by being surrounded by parentheses.

The operands of a block move instruction are specified as source bank, destination bank—the opposite order of the object bytes generated.

Comment Field—The comment field may start no sooner than one space after the operation code field or operand field depending on instruction type.

Address Mode Formats

ddressing Mode	Format		Addressing Mode	Format	
-	#d		Absolute Indexed by Y	ld,y	
	#a			d,y	
	#al			a,y	
	#EXT			!a,y	
	# <d< td=""><td>41</td><td></td><td>!al,y</td><td></td></d<>	41		!al,y	
		11: " 		!EXT,y	
	# <a< td=""><td></td><td></td><td>EXT,y</td><td></td></a<>			EXT,y	
	# <a!< td=""><td></td><td>Absolute Long Indexed</td><td>>d,x</td><td></td></a!<>		Absolute Long Indexed	>d,x	
	# <ext< td=""><td></td><td></td><td>>a,x</td><td></td></ext<>			>a,x	
	#>d		by X	>al,x	
	#>a	di.	14.	al,x	
	#>al	al i	1	>EXT,x	
	#>EXT				(the assembler calculate
	#∧d		Program Counter	d	
	#^a		Relative and	а	r and rl)
	#∧al	1.9	Program(Counter	al	
			Relative Long	EXT	
	#^EXT		Absolute Indirect	(d)	
Absolute	!d	36		(!d)	
	!a			(a)	
	а			(!a)	
	!al			(!al)	
	IEXT				
	EXT			(EXT)	
Absolute Long	>d		Direct Indirect	(d)	
ADSOIUTE LONG	>a			(<a)< td=""><td></td></a)<>	
	≥ai		4	(<al)< td=""><td></td></al)<>	
			1	(<ext)< td=""><td></td></ext)<>	
	al		Direct Indirect Long	[d]	
¥1	>EXT		Direct manoor cong	[<a]< td=""><td></td></a]<>	
Direct Page	d			[<a]]< td=""><td></td></a]]<>	
-	<d< td=""><td></td><td>· i</td><td>[<ext]< td=""><td></td></ext]<></td></d<>		· i	[<ext]< td=""><td></td></ext]<>	
	<a< td=""><td></td><td></td><td></td><td></td></a<>				
	<al< td=""><td><i>v</i></td><td>Absolute Indexed</td><td>(d,x)</td><td></td></al<>	<i>v</i>	Absolute Indexed	(d,x)	
	<ext< td=""><td></td><td></td><td>(Id,x)</td><td></td></ext<>			(Id,x)	
Accumulator	A			(a,x)	
	(no operand)	1.		(!a,x)	
Implied Addressing		*C	1	(lal,x)	
Direct Indirect	(d),y		1	(EXT,x)	
Indexed	(<d),y< td=""><td></td><td></td><td>(IEXT,x)</td><td></td></d),y<>			(IEXT,x)	
	(<a),y< td=""><td></td><td>Stack Addressing</td><td>(no operand)</td><td></td></a),y<>		Stack Addressing	(no operand)	
	(<al),y< td=""><td>1 × C</td><td></td><td>(d,s),y</td><td></td></al),y<>	1 × C		(d,s),y	
	(<ext),y< td=""><td>3</td><td>Stack Relative</td><td></td><td></td></ext),y<>	3	Stack Relative		
Direct Indirect	[d],y		Indirect Indexed	(<d,s),y< td=""><td></td></d,s),y<>	
Indexed Long	[<d],y< td=""><td>(*</td><td></td><td>(<a,s),y< td=""><td></td></a,s),y<></td></d],y<>	(*		(<a,s),y< td=""><td></td></a,s),y<>	
Indexed Long	[<a],y< td=""><td><u>4</u></td><td>2.5</td><td>(<al,s),y< td=""><td></td></al,s),y<></td></a],y<>	<u>4</u>	2.5	(<al,s),y< td=""><td></td></al,s),y<>	
	[<al],y< td=""><td></td><td>÷</td><td>(<ext,s),y< td=""><td></td></ext,s),y<></td></al],y<>		÷	(<ext,s),y< td=""><td></td></ext,s),y<>	
			Block Move	d,d	
	{ <ext],y< td=""><td></td><td></td><td>d,a</td><td></td></ext],y<>			d,a	
Direct Indexed	(d,x)			d,al	
Indirect	(<d,x)< td=""><td></td><td></td><td>d,EXT</td><td></td></d,x)<>			d,EXT	
	(<a,x)< td=""><td></td><td></td><td>a,d</td><td></td></a,x)<>			a,d	
	(<al,x)< td=""><td></td><td></td><td></td><td></td></al,x)<>				
	(<ext,x)< td=""><td></td><td></td><td>a,a</td><td></td></ext,x)<>			a,a	
Direct Indexed by X	d,x		,	a,al	
Direct macked by m	<d,x< td=""><td></td><td></td><td>a,EXT</td><td></td></d,x<>			a,EXT	
	<a,x< td=""><td></td><td></td><td>al,d</td><td></td></a,x<>			al,d	
				al,a	
	<al,x< td=""><td></td><td></td><td>al,al</td><td></td></al,x<>			al,al	
	<ext,x< td=""><td></td><td></td><td>al,EXT</td><td></td></ext,x<>			al,EXT	
Direct Indexed by Y	d,y			EXT,d	
	<d,y< td=""><td></td><td></td><td>EXT,a</td><td></td></d,y<>			EXT,a	
	<a,y< td=""><td></td><td></td><td>EXT,al</td><td></td></a,y<>			EXT,al	
	<al,y< td=""><td></td><td></td><td></td><td></td></al,y<>				
	<ext,y< td=""><td></td><td>+</td><td>EXT,EXT</td><td></td></ext,y<>		+	EXT,EXT	
Absolute Indexed by X	d,x		ł		
Absolute indexed by A	ld,x	J.			
		10			
	a,x		$\Gamma_{\Gamma} =$		
	la,x	1			
	· !al,x				
	!EXT,x	12			
	EXT,x				
	-	ř.	1		

Addressing Mode Summary

	Instructio		Memory Utilization In Number of Program Sequence Bytes			
Address Mode	Original 8 Bit NMOS 6502	New W65C816	Original 8 Bit NMOS 6502	New W65C816		
1. Immediate	2	2(3)	2	2(3)		
2. Absolute	4(5)	4(3,5)	3	3		
3. Absolute Long		5(3)		4		
4. Direct	3(5)	¹ 3(3,4,5)	2	2		
5. Accumulator	2	2	1	1		
6. Implied	2	2	1	1		
7. Direct Indirect Indexed (d),y	5(1)	5(1,3,4)	2	2		
8. Direct Indirect Indexed Long [d], y		Ġ(3,4)	-	2		
9. Direct Indexed Indirect (d,x)	6	6(3,4)	2	2		
10. Direct, X	4(5)	4(3,4,5)	2	2		
11. Direct. Y	4	4(3.4)	2	2		
12. Absolute, X	4(1.5)	4(1,3,5)	3	3		
13. Absolute Long, X	-	5(3)		4		
14. Absolute, Y	4(1)	4(1,3)	3	3		
15. Relative	2(1,2)	2(2)	2	2		
16. Relative Long	—	3(2)	-	3		
17. Absolute Indirect (Jump)	5	5	3	3		
18. Direct Indirect	-	5(3,4)	-	2		
19. Direct Indirect Long	-	6(3,4)		2		
20. Absolute Indexed Indirect (Jump)	(, _)	[†] 6	-	3		
21, Stack	3-7	3-8	1-3	1-4		
22. Stack Relative	-	4(3)	-	2		
23. Stack Relative Indirect Indexed	-	7(3)	-	2		
24. Block Move X, Y, C (Source, Destination, Block Length)	-	7	_	3		

NOTES:

......

NOTES:
1. Page boundary, add 1 cycle if page boundary is crossed when forming address.
2. Branch taken, add 1 cycle if branch is taken.
3. M = 0 or X = 0, 16 bit operation, add 1 cycle, add 1 byte for immediate.
4. Direct register low (DL) not equal zero, add 1 cycle.
5. Read-Modify-Write, add 2 cycles for M = 1, add 3 cycles for M = 0.

Caveats and Application Information

Stack Addressing

When in the Native mode, the Stack may use memory locations 000000 to 00FFFF. The effective address of Stack, Stack Relative, and Stack Relative Indirect Indexed addressing modes will always be within this range. In the Emulation mode, the Stack address, range is 000100 to 0001FF. The following opcodes and addressing modes will increment or decrement beyond this range when accessing two or three bytes:

JSL; JSR(a,x); PEA; PEI; PER; PHD; PLD; RTL; d,s; (d,s),y

Direct Addressing

The Direct Addressing modes are often used to access memory registers and pointers. The effective address generated by Direct; Direct,X and Direct,Y addressing modes will always be in the Native mode range 000000 to 00FFFF. When in the Emulation mode, the direct addressing range is 000000 to 0000FF, except for [Direct] and [Direct],Y addressing modes and the PEI instruction which will increment from 0000FE or 0000FF into the Stack area.

When in the Emulation mode and DH is not equal to zero, the direct addressing range is 00DH00 to 00DHFF, except for [Direct] and [Direct],Y addressing modes and the PEI instruction which will increment from 00DHFE or 00DHFF into the next higher page.

When in the Emulation mode and DL in not equal to zero, the direct addressing range is 000000 to 00FFFF.

Absolute Indexed Addressing (W65C816 Only)

The Absolute Indexed addressing modes are used to address data outside the direct addressing range. The W65C02 and W65C802 addressing range is 0000 to FFFF. Indexing from page FFXX may result in a 00YY data fetch when using the W65C02 or W65C802. In contrast, indexing from page ZZFFXX may result in ZZ+1,00YY when using the W65C816.

Future Microprocessors (i.e., W65C832)

Future WDC microprocessors will support all current W65C816 operating modes for both index and offset address generation.

ABORT Input (W65C816 Only)

ABORT should be held low for a period not to exceed one cycle. Also, if ABORT is held low during the Abort Interrupt sequence, the Abort Interrupt will be aborted. It is not recommended to abort the Abort Interrupt. The ABORT internal latch is cleared during the second cycle of the Abort Interrupt. Asserting the ABORT input after the following instruction cycles will cause registers to be modified:

- Read-Modify-Write: Processor status modified if ABORT is asserted after a modify cycle.
- RTI: Processor status will be modified if ABORT is asserted after cycle 3.
- IRQ, NMI, ABORT BRK, COP: When ABORT is asserted after cycle 2, PBR and DBR will become 00 (Emulation mode) or PBR will become 00 (Native mode).

The Abort Interrupt has been designed for virtual memory systems. For this reason, asynchronous ABORT's may cause undesirable results due to the above conditions.

VDA and VPA Valid Memory Address Output Signals (W65C816 Only)

When VDA or VPA are high and during all write cycles, the Address Bus is always valid. VDA and VPA should be used to qualify all memory cycles. Note that when VDA and VPA are both low, invalid addresses may be generated. The Page and Bank addresses could also be invalid. This will be due to low byte addition only. The cycle when only low byte addition occurs is an optional cycle for instructions which read memory when the Index Register consists of 8 bits. This optional cycle becomes a standard cycle for the Store instruction, all instructions using the 16-bit Index Register mode, and the Read-Modify-Write instruction when using 8- or 16-bit Index. Register modes.

Apple II, Ile, Ilc and II+ Disk Systems (W65C816 Only)

VDA and VPA should not be used to qualify addresses during disk operation on Apple systems. Consult your Apple representative for hardware/ software configurations.

DB/BA Operation when RDY is Pulled Low (W65C816 Only)

When RDY is low, the Data Bus is held in the data transfer state (i.e., ϕ 2 high). The Bank address external transparent latch should be latched when the ϕ 2 clock or RDY is low.

M/X Output (W65C816 Only)

The M/X output reflects the value of the M and X bits of the processor Status Register. The REP, SEP and PLP instructions may change the state of the M and X bits. Note that the M/X output is invalid during the instruction cycle following REP, SEP and PLP instruction execution. This cycle is used as the opcode fetch cycle of the next instruction.

All Opcodes Function in All Modes of Operation

It should be noted that all opcodes function in all modes of operation. However, some instructions and addressing modes are intended for W65C816 24-bit addressing and are therefore less useful for the W65C802. The following is a list of instructions and addressing modes which are primarily intended for W65C816 use:

JSL; RTL; [d]; [d],y; JMP al; JML; al; al,x

The following Instructions may be used with the W65C802 even though a Bank Address is not multiplexed on the Data Bus:

PHK; PHB; PLB

The following instructions have "limited" use in the Emulation mode:

- The REP and SEP instructions cannot modify the M and X bits when in the Emulation mode. In this mode the M and X bits will always be high (logic 1).
- When in the Emulation mode, the MVP and MVN instructions use the X and Y Index Registers for the memory address. Also, the MVP and MVN instructions can only move data within the memory range 0000 (Source Bank) to 00FF (Destination Bank) for the W65C816, and 0000 to 00FF for the W65C802.

Indirect Jumps

The JMP (a) and JML (a) instructions use the direct Bank for indirect addressing, while JMP (a,x) and JSR (a,x) use the Program Bank for indirect address tables.

Switching Modes

When switching from the Native mode to the Emulation mode, the X and M bits of the Status Register are set high (logic 1), the high byte of the Stack is set to 01, and the high bytes of the X and Y Index Registers are set to 00. To save previous values, these bytes must always be stored before changing modes. Note that the low byte of the S, X and Y Registers and the low and high byte of the Accumulator (A and B) are not affected by a mode change.

How Hardware Interrupts, BRK, and COP Instructions Affect the Program Bank and the Data Bank Registers

When in the Native mode, the Program Bank register (PBR) is cleared to 00 when a hardware interrupt, BRK or COP is executed. In the Native mode, previous PBR contents is automatically saved on Stack.

In the Emulation mode, the PBR and DBR registers are cleared to 00 when a hardware interrupt, BRK or COP is executed. In this case, previous contents of the PBR are not automatically saved.

Note that a Return from Interrupt (RTI) should always be executed from the same "mode" which originally generated the interrupt.

Binary Mode

The Binary mode is set whenever a hardware or software interrupt is executed. The D flag within the Status Register is cleared to zero.

WAI Instruction

The WAI instruction pulls RDY low and places the processor in the WAI "low power" mode. NMI, IRQ or RESET will terminate the WAI condition and transfer control to the interrupt handler routine. Note that an ABORT input will abort the WAI instruction, but will not restart the processor. When the Status Register I flag is set (IRQ disabled), the IRQ interrupt will cause the next instruction (following the WAI instruction) to be executed without going to the IRQ interrupt handler. This method results in the highest speed response to an IRQ input. When an interrupt

is received after an ABORT which occurs during the WAI instruction, the processor will return to the WAI instruction. Other than RES (highest priority), ABORT is the next highest priority, followed by NMI or IRQ interrupts.

STP Instruction

The STP instruction disables the ϕ 2 clock to all circuitry. When disabled, the $\phi 2$ clock is held in the high state. In this case, the Data Bus will remain in the data transfer state and the Bank address will not be multiplexed onto the Data Bus. Upon executing the STP instruction, the RES signal is the only input which can restart the processor. The processor is restarted by enabling the ϕ 2 clock, which occurs on the falling edge of the RES input. Note that the external oscillator must be stable and operating properly before RES goes high.

COP Signatures

Signatures 00-7F may be user defined, while signatures 80-FF are reserved for instructions on future microprocessors (i.e., W65C832). Contact WDC for software emulation of future microprocessor hardware functions.

WDM Opcode Use

The WDM opcode will be used on future microprocessors. For example, the new W65C832 uses this opcode to provide 32-bit floating-point and other 32-bit math and data operations. Note that the W65C832 will be a plug-to-plug replacement for the W65C816, and can be used where highspeed, 32-bit math processing is required. The W65C832 will be available in the near future.

RDY Pulled During Write

The NMOS 6502 does not stop during a write operation. In contrast, both the W65C02 and the W65C816 do stop during write operations. The W65C802 stops during a write when in the Native mode, but does not stop when in the Emulation mode.

MVN and MVP Affects on the Data Bank Register

The MVN and MVP instructions change the Data Bank Register to the value of the second byte of the instruction (destination bank address).

Interrupt Priorities

The following interrupt priorities will be in effect should more than one interrupt occur at the same time:

RES	Highest Priority
ABORT	24
NMI	1
IRQ	Lowest Priority

Transfers from 8-Bit to 16-Bit, or 16-Bit to 8-Bit Registers

All transfers from one register to another will result in a full 16-bit output from the source register. The destination register size will determine the number of bits actually stored in the destination register and the values stored in the processor Status Register. The following are always 16-bit transfers, regardless of the accumulator size:

TCS; TSC; TCD; TDC

Stack Transfers

When in the Emulation mode, a 01 is forced into SH. In this case, the B Accumulator will not be loaded into SH during a TCS instruction. When in the Native mode, the B Accumulator is transferred to SH. Note that in both the Emulation and Native modes, the full 16 bits of the Stack Register are transferred to the A, B and C Accumulators, regardless of the state of the M bit in the Status Register.