

Read Me First

':

Special Applied Engineering (Beta)16 Bit Card Software Developer's Package

The version of the 16 Bit Card t~at is being sent to software developers is "only" capable of addressing up
to 8 Meg of memory. The versi0n that will be shipped to customers will be capable of addressing up to 16
Meg of memory, the full capability of the 65816 processor. This: ~eta version of the 16 Bit Card is provided r
with only one ribbon cable to connect it to a RamWorks II memory expansion card. Ordinarilly it would have
another shorter ribbon cable to connect the 16 Bit Card (P2) to a 2 Meg. RamWorks memory expander
piggy-back card. This"2 Meg/' cable is not required when using the 512K version of the RamWorks
memory expander piggy-back card.

:Applied Engineering Techni(:al Support

Applied Engineering has a staff of technicians dedicated to answering specific questions about Applied
Engineering products and software. If your question cannot be resolved by the technician, he will refer
the question to the appropriate engineer. The technical support representatives are available Monday
through Friday, between the hours of 9 AM to 5 PM (Central) ; The technical support telephone number is
(214)241-6069. Please have as much information as possible available about your problem if you call.

Soldered MMU chip on the /Ie main logic board ,

Important!: Some (very few) Apple /Ie's were manufactured with,the MMU chip soldered in. If your /Ie does not
have a socket for the MMU, the MMU will have to be desoldered and a socket installed. This is very tricky and should
only done by a professional with the proper tools. Apple Computer, Inc has assured us that /Ie's are now assembled
with socketed MMU chips.

MMU~

Main Logic Board -------. Jml d .. b. m_~mmEmmm*:K
END VIEW of SOLDERED MMU

MMU _____

SOCKEf~

Main Logic Board -------. ;!!:I .. :.I.: .. I. =I=!L~
END VIEW ,of SOCKETED MMU

~)
'--""-

i
----i

~

-"

-"

2-..t-.. I'
,
~

...J

-"

-"--

.......

........

......

......

Installation

I

Installing the 16 Bit dard

• Turn the //e power switch to the OFF position, but leave the computer plugged in.

I I

• Remove the //e top liq. : ,

• Make sure·the power-on indicator light inside the computer is OFF. (See Illustration 1.)

Illustration 1:

Power-On
Indicator

Power
Supply

Auxiliary
Slot

• If installed, remove the RamWorks II card from the //e auxiliary slot.

CPU

MMU

• Remove the 74LS273 chip from the RamWorks II socket marked "CPU." (Refer to
Illustration 2.) Carefully set the RamWorks II aside and store the 74LS273 in a safe place.

2

'.
I,

Installation

Illustration 2:

•

•

•

•

Remove 74LS273
from this socket

Locate the CPU chip and the MMU chip on the /Ie main logic board. (Refer to Illustration 1.)

Remove the MM U chip from the lie main logic board. Use a small flatblade screwdriver to gently
lift alternate ends of the chip until it is free from its socket. Carefully set the MMU chip aside.

Remove the CPU chip in the same manner. The lie's CPU chip is not required with the 16 Bit
Card installed. Store it in a safe place.

Verify that all pins on the 16 Bit Card CPU and MMU header connectors are straight. (Refer to
Illustration 3.)

3

.....

, -

-

-

-

Illustration 3:

Native (16 bit) mode
indicator L.E.D.

2 Meg. Memory Expander
ribbon cable connector

(optional)

Installation

RamWorks II
Connector

Socket for 2 Meg.
Memory Expander

MMU/CPU
Headers

16L8PAL. MMUS k
(optional) oc et

,

Future
Expansion
Connector

• Install the MMU chip orjl the 16 Bit Card, as shown in Illustration 4. Be sure the notch is oriented
as indictated in the illustration. l

Illustration 4:

II
~:;;'·· ·
,:''''

, ,~,t .. ,=·

::-:;. .

'.

Ribbon cable to
CPU Connector
on RamWorks II

" I

. ~&C'llI

Insert MMU into
this socket

4

Installation

• Plug one of the ribbon cable header connectors (both ends are the same) into the 16 Bit Card
socket marked "Pi" exactly as shown in Illustration 4.

•

•

Invert the 16 Bit Card (solder side up; component side down) and position it above the CPU
and MMU sockets on the //e main logic board. The red LED on the 16 Bit Card should be
pointing toward the ;keyboard .

[,
I
}

i i
! :

Using the viewport to align the header pins on the 16 Bit Card with the socket holes on the //e
main logic board, install the 16 Bit Card into the CPU and MMU sockets. Press gently but firmly
until the card is securely seated.

Illustration 5:

•

16 Bit
Card

Viewport

RamWorks II --H--~-~

Ribbon
Cable Apple//e

rm

Position the keyboard end of the RamWorks II card :near the installed 16 B~ Card. Install the
free end of the 16 Bit Card ribbon cable to the Ram\Norks II socket marked "CPU." Verify that
all header connector pins are fully seated in the socket and that the cable is installed as shown
in Illustration 6.

"
5

r

~, , .
j

,
-"

Installation

'I
Illustration 6:

•

•

D',: ~ ~

J= .-:.::=-

Ribbon cable from
P1 of 16 Bit Card.

O 0: ~::. ~::~ ' " . :", . :'::,

. .
", ' ..

I

"

Install the RamWorks lI 'card into the lIe's auxiliary slot. ;

Replace the lie's top lid. Installation is complete .

Boot the disk labeled "~ 16 Bit Developer's Disk" and .run the program "TEST816."

If the computer will not boot or fails the test program, check to see that all chips, cables, and
connectors are securely seated in their sockets. Also check for bent pins on the MMU chip and
on the ribbon cable and CPU I MMU headers. I

'1·

6

/

Installation

For developers with the 2 Meg. RamWorks memory expansion piggy-back card, a special ribbon
cable is required to connect the 16 Bit Card to the 2 Meg. expander card. This cable is available
from Applied Engineering.

To install this cable you must first remove the PAL 16L8 chip from the 2 Meg. expander and install it
on the 16 Bit Card. This chip is to be inserted in the socket NEXTto socket "P2." One end of the
ribbon cable is then conne'cte.d to socket "P2" with the cable trailing toward the keyboard when
installed. The other end of th~s cable is to be connected to the empty 16L8 socket on the 2 Meg.
expander. The cable shoJld also trail toward the keyboa~d end of the card when installed.

Illustration 7:

Install
ribbon cable

connector from P2
of 16 Bit Card

0
0
0
0
0
0
0
0

2 3

.IE

4 5 6

Remove
PAL 16L8

,

r

7

II ° 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

° I~
PINS 1 ° ° '2 MEG' EXPANDER °

=

=

=

=

=

=

=

=

Operation and Architecture

i
The 16 Bit Card will allow you to address up to 16 Meg linearly" using the 65816 processor's native mode
of operation. In 65C02 emulation mode, the memory on the Ramworks II card will look and act exactly like
the memory on a Ramworks II without the 16 Bit Card installed, with one exception: with the 16 Bit Card
installed, hitting CONTROL-RESET ,«ill always put you back in BANI< 0; on a Ramworks II without the 16 Bit
Card, CONTROL-RESET has no leff~ct on the bank register. I I

I 1'.1

If you have a 1 Meg Ramworks II; you will get banks 00 thru OF, whether you are in 65C02 emulation mode
or in the 65816 native mode. If you have a 1 Meg Ramworks II with a 1/2 Meg (512 K) piggy back, you will
get banks 00-17, whether you are, in 65C02 emulation mode or ir 65815 native mode.

If you have worked with the Applied Engineering 2 Meg piggy back board before, you probably know of its
unique memory mapping scheme. Banks are arranged in the order 00 through OF (on Ramworks II), then
from 10-17,30-37,50-57,70-77 (on the 2 Meg piggy back). This is. done to maintain compatibility with other
piggy back cards from Applied Engineering, and with the original Ramworks. In 65C02 emulation mode,
the banks retain this partially non linear mapping; however, in 65816 native mode, the banks become
linearized, from 00 thru 2F.

In an Apple lie equipped with a Ramworks II but not a 16 Bit Card, the memory on the Ramworks II is
accessed as alternate banks of auxiliary memory. The 64K of memory on the Apple lie motherboard is
accessed when the MMU's softswitches are set one way (MAIN memory) and the memory on the
Ramworks II card is accessed when the MMU's softswitches are set the other way (AUXILIARY memory).
One unique bank of 64K of memory is chosen from the available banks on the Ramworks II card by the
BANK SELECT REGISTER, which is in the lie's memory map at location $C073. Bank 0 on the Ramworks II
card is where the video generator circuits in the Apple lie look for the 80 column video and Double High
Resolution graphics information. No matter what 64K bank the BANK SELECT REGISTER is pointing to,
all video access goes to bank o. ,(This feature is patented by Applied Engineering.)

All hardware locations, including the MMU's softswitches, are, located in the $COOO to $CFFF range of
memory (hereafter referred to as $CXXX), which is called the HARDWARE PAGE. With a Ramworks II
installed, access to $CXXX range of memory IN ANY BANK will' access the hardware page. In other words,
the $CXXX range of ANY BANK is mapped into the HARDWARE PAGE.

When the 16 Bit Card is installed and running in the 65C02 emulation mode, the softswitches still work
exactly as they do without the 16 Bit Card. However, when the processor is in the 65816 native mode
accesses to the hardware page can only be accomplished from 65816 BANK O. Any bank other than
65816 BANK 0 will not allow you to access the hardware page. If you are in a 65816 bank other than BANK
0, and you access the $CXXX range, you will be accessing RAM MEMORY, NOT the hardware page .
When you are in 65816 BANK 0, the Apple lie softswitches, which are in the hardware page, will allow you
to flip back and forth between main memory or auxililary memory. If you are in a bank other than BANK 0,
the softswitches will have no effect. That is, even if you go into 65816 BANK 0 and flip MMU softswitches
so that you are looking at AUX memory, when you go into a 65816 bank other than BANK 0, the
softswitches will have no effect. This is because there is no auxiliary memory associated with 65816 banks
other than BANK O. In 65816 native mode, BANK 0 main memory is the 64K on the Apple lie
motherboard, and BANK 0 auxiliary memory is the first 64K on the Ramworks card. This allows you to use
the softswitches to flip between main memory and aux memory,,(as long as you are in BANK 0); this makes
using the 80 column video and double hi~h resolution graphics easier. If the 65816 is in a bank other than
BANK 0, it will map into a corresponding bank on the Ramworkslll or a piggy back card.

8

/ /

Operation and Architecture

The softswitches that control access to the LANGUAGE CARD area of memory that overlays the
motherboard ROM space can only be accessed from 65816 BANK O. Further, they only have an effect in
65816 BANK O. Because the 65816 looks for its interrupt vectors in BANK 0 at locations $FFF4 through
$FFFF, you must use the language card RAM space to store these vectors.

One further note on using softswitches: The 65816 can ha~e 8-bit wide registers or 16-bit wide registers .
In the 65C02 emulation mode all registers (except the PC) are 8-bits wide, but in the native mode you can
set the width of the X and Y rJgisters with the X bit in the Pr~Gessor Status Register (P) . If X=O the X and Y
registers are 16-bits wide, and if! X=1 then X and Yare 8-bits. wide. The M bit in the P register controls the
width of the Accumulator. If M=O then the Accumulator is 16~bits wide, and if M=1 then the accumulator is
8-bits wide. You should only access the hardware page · if M=1 and X=1. This will prevent unwanted
problems because of writes to two successive addresses.

16 Bit Memory Maps

65816 Native mode 65CQ2 Emulation Mode

65816 Bank 0
(Main)

/Ie motherboard

65816 Bank 1

RW Bank 1

65816 Bank 2

RW Bank2

65816 Bank 3

RW Bank3

65816 Bank 4

RW Bank4

•
•
•

65816 Bank 2F

RW Bank2F

I !

65816 Bank 0
(Aux.)

RW BankO lie Main Memory

9

RW BankO

RW Bank 1

RW Bank2

RW Bank3

RW Bank 4

•
•
•

RW Bank2F

r
[

-

65C816 Data Sheet

The following pages have been excerpted from the W65C816 Data Sheet
and are reprinted with permission from Western Design Center, Inc.

I · J::
W65C816 Processor Program in'g Model

I ' 1

[:: ::!::! !I!.S = I 8 BITS II 8 BITS

fDa"tasaiik Reg. x Register Hi
(DBR) (XH) L _______ --L. __ :..-__ ---'-..:.>:.;.".;.=.~_......,;.~

r -- - - - - - -r----~-....-~~_:_-:___,
I Data Bank Reg. Y Register Hi

~:: ~~~) _ = ~;::::~(Y=H=)=::;:::~~:::::;==~
I 00 L _______ -..L.. __ :"-~_--'-_;';;':"';'';;'';''''''''';'';' ___ ''''''''''

,. ,:;": 1= 6502
.;. Registers

Program Bank Reg.
(PBR)

r-------I 00 Direct Reg. Hi (D) Direct Reg. Low
(DH) (DL) L _______ -'-_____ ---L. _____ ~

Status Register Coding

STATUS REG. (P)

~--~EMULATION 1 = 6502
t---f-...i...-...i...---......... C-i 0 = NATIVE

IRQ DISABLE
DECIMAL MODE

INDEX REG. SELECT
MEMORY SELECT

OVER FLOW
/NEGATIVE

..

Ii

10

1 = TRUE
1 = RESULT ZERO
1 = DISABLE
1 = TRUE
1=8BIT,0=16BIT

I 1=8BI1;0=16BIT

, .,

1 = TRUE
1 = NEGATIVE

/

65C816 Data Sheet

Functional Description

The W6SCfl02 otlers tho design engineer the opportunity to utilize both

eXisting softwam prog rams and hardwaro conllgurations. whilu also

.1"ItIJ.lVIIlY til" ,,,101,,01 "' I VHIIIAYf1~ ti l IIIr:I!!jj§lJfl lil gl~Ii:lr h'"UIl15 Ilil d Iilti ter

execution limes. Tho W6SC802's "ease of use" design and implementa­

tion features provide the designer with increased flex ibility and reduced

implemont.,lIon costs_ In the Emutation nlqde. the W6SC802 not only

offors so ftware compa tibility, bllt is also hardware (pin-to-pin) com­

patible with 650:1 cJcslgns ... plus it provlcJes ,1111 acJvall lagcs ul IU-bll

internal operation In 6502-compatible applications. The W65C802 is an

e)(cellenl direct replacement microprocessor lor 6502 designs.

fil e W6SCijt6 provides the design engineer with upward rnublilly " lid

software compatibility in applications where a 16-bit system configura­

tion is desired. The W65C816's 16-bit hardware configuration, coupled

with current software allows a wide selection of system applications. In

the Emulation mode, the W65C816 otters many advantages, including

full software compatibility with 6502 coding. In addition, the W65C816's

powerful instruction set and addressing modes make it an excellent

choice for new 16-bit designs.

Internal organization of the W6SC802 and W65C816 can be divided into

two parts: 1) The Register Section, and 2) The Control Section. Instruc­

\lons (or opcodes) obtained from program memory are executed by

implementing a series of data transfers within the Register Section.

Signals that cause data transfers to be executed are generated within the

Control Section. Both the W6SC802 and the W65C816 have a 16-bl t

internal architecture with an B-bit external data bus.

Instruction Register and Decode

An opcode ente~s the processor on the Data Bus, and is latched into the

Instruction Register during the instruction fetch cycle. This instruction

is then decoded. along with timing and interrupt signals, to generate the

various Instruction Register control signals.

Timing Control Unit (TCU)
The Ti ming Control Unit keeps track of each instruction cycle as it isex­

ecuted. The TCU is set to zero each time an instrucllon fetch s executed,

and is advanced althe beginning of each cycle for as many cycles as is

required to complete the instruction. Each data transfer between regis­

ters depends upon decoding the contents of both the Instruction Regis­

ter and th.e Timing Control Unit.

Arithmetic and Logic Unit (ALU)

All ari thmetic and logic operations take place with in the 16-bit ALU. In

addition to data operations, the ALU also calculates the effective address

tor relaliveand indexed addressing modes. The result of a data operallon

is stored In either memory or an internal register. Carry, Negative, Over­

flow and Zero flags may be updated following the ALU data operation.

Internal Registers (Refer to Programming Model)

Accumulators (A, B, C)
The Accumulator is a general purpose register which stores one of the

operands. or the result of most arithmetic and logical operations. In the

Native mode (E=O), when the Accumulator Select 81t (M) equals zero.

the Accumulator is established as 16 bits wide (A + 8 = C) . When the

Accumulator Select Bit (M) equals one, the Accumulator is 8 bits wide

(A) . In this case. the upper 8 bits (8) may be used for temporary storage

In conjunction with the Exchange Accumulator (XBA) instruction.

Data Bank Register (DBR)
During modes of operation, the 8-bit Data Bank Register holds the de­

fault bank address for memory transfers. The 24-bit address is composed

of the 16-bit instruction effective address and the 8-bit Data Bank ad-

dress. The register value is multiplexed with the data value and is present

on the Data/Address lines during the first half of adata transfer memory

r.yr.le lor Ihe W65C816. The Dala Bank Register III Initialized to zero dllr­

Ing Reset.

Direct (p)
The 16-t;l.it Direct Register provides an address offset for all instruct ions

IJRinO dlreCI addressing. The effective bank zero address is formed by

adding the S-bit Instruction operallJ adJrll§~ to Ihl! DlrllCl nllgi~IM TllII

Direct Register is initialized to zero during Reset.

Index (X and Y)
There are two Index Registers (X and V) which may be used as genurlJl

purpose reg isters or to provide an index value for calculation of the ef­

fective address. When executing an instruction with indexed addressing,

the microprocessor fetches the opcode and the base address, and then

modifies the address by adding the Index Register contents to the ad­

dress prior to performing the desired operation. Pre- indexing or post­

indexing of Indirect addresses may be selected. In the Native mode (E=O),

both Index Registers are 16 bits wide (providing the Index Select Bit (X)

equals zero). If the Index Select Bit (X) equals one, both registers will be

8 bits wide, and the high byte is forced to zero.

Processor Status (P)
The S-bit Processor Status Register conta ins status flags and mode select

bits. The Carry (C), Negative (N), Overflow (V), and Zero (Z) status flags

serve to report the status of most ALU operations. These status flags are

tested by use of Conditional Branch instructions. The Decimal (D), IRO

Disable (I). Memory/Accumulator (M), and Index (X) bits are used as

mode select flags. These flags are set by the program to change micro­

procel;sor operations.

The Emulation (E) select and the Break (B) flags are accessible only

through the Processor Status Register. The Emulation mode select flag

is seleC: ted by the Exchange Carry and Emulation Bits (XCE) instruction .

Table 11, W65C802 and W65C816 Mode Comparison. illustrates the

leatures of the Native (E=O) and Emulation (E=l) modes. The M and X

flags ar,e always equal to one in the Emulation mode. When an interrupt

occurs during the Emulation mode, the Break flag Is written to stack

memo,ry as bit 4 of the Processor Status Register.

Prog~am Bank Register (PBR)
The 8-bit Program Bank Register holds the bank address for all instruc­

tion fetches. The 24-bit address consists 01 the 16-bit instruction effective

address and the 8-bit Program Bank address. The reg ister value is multi­

plexed with the data value and presented on the Datal Address lines dUring

the first halt of a program memory read cycle. The Program Bank Regis­

ter is initialized to zero during Reset. The PHK instruction pushes the

PBR register onto the Stack.

Program Counter (PC)
The 16-bit Program Counter Register provides the addresses which are

used to step the microprocessor through sequential program instruc­

tions. The register is incremented each time an instruction or operand is

fetched,from program memory.

Stack Pointer (S)
The Stack Pointer is a lS-bit reg ister which is used to indicate the next

available location in the stack memory area. It serves as the effective ad­

dress In stack addreSsing modes as well as subroutine and interrupt pro­

cessing. The Stack Pointer allows simple implementation of nested sub­

routines and multiple-level Interrupts. During the Emulation mode. the

Stack Pointer high-order byte (SH) Is always equal to one. The bank ad­

dress 'for a/l stack operations is Bank zero.

11 ,

I,
I

65C816 Data Sheet

i
0

=- ABORT (111)

005

NiiT - Vaa

IIfi - Vss

ROY

0 <>2 (IN)

a CLOCK
0 0", 0 GEN· <>1 (OUT) (8021 -' 0:1 0 .. U .. U ERATOR",

<>2(OUT)(8U ... c .. c:I
'" %% Z .. % 2:i 0" c - z .. Uo 0-.. =>:1 ::>:1 ..

1:::>
a:

'" "'''' '" <3 ~ ~ RJ'iT ..
II:

SYNC (802)

VPA (816)

SYSTEM
VOA (816)

CONT.
Mt (116)

01>-01 (802)
OOJBAI>-01JBA7 (01.)

= VP (816)

E (816)

MIX (816)

I
Block Diagram - Internal Architecture

~:

j:

12

65C816 Data Sheet

W65C816 Compatibility Issues

W65C816/802 W65C02 NMOS 6502

1. S (Stack) Always page 1 (E = 1), 8 bits Always page 1, 8 bits Always page 1, 8 bits
16 bits when (E = 0).

2. X (X Index Register) Indexed page zero always in Always page 0 Always page 0
p~ge 0 (E = 1),

,!
Cross page (E = 0).

3. Y (Y Index Register) Indel(ed page zero always in Alw~ys page 0 Always page 0
page 0 (E = 1),
Cross page (E = 0).

4. A (Accumulator) 8 bits (M = 1), 16 bits (M = 0) 8 bits 8 bits

5. P (Flag Registor) N, V, and Z flags valid in N, V, and Z flags valid in N, V, and Z flags invalid
decimal mode. decimal mode. in decimal mode.
D = 0 after reset or interrupt. D = 0 after reset and D = unknown after reset.

interrupt. D not modified after interrupt.

6. Timing
A. ABS, X ASL, LSR, ROL, 7 cycles 6 cycles 7 cycles

ROR With No Page Crossing ,
B. Jump Indirect

Operand = XXFF 5 cycles 6 cycles 5 cycles and invalid page
crossing

C. Branch Across Page 4 cycles (E = 1) 4 cycles 4 cycles
3 cycles (E = 0)

D. Decimal Mode No additional cycle Add 1 cycle No additional cycle

7. BRK VectDr OOFFFE,F (E = 1l...!!!!K bit = 0 F '=.E.S F BR K bit = 0 on stack FIIE.,F Jill..K bit = 0 on stack
on stack if IRQ, NMI, ABORT. iflRQ,NMI. iflRQ,NMI.
OOFFE6, 7 (E = 0) X = X on I
Stack always.

.
8. Interrupt or Break PBR not pushed (E = 1) Not ;lvailable Not available

Bank Address RTI PBR not pulled (E = 1) :1 P,BR pushed (E = 0)
ATI PBR pulled (E = 0) ,

9. Memory Lock (ML) ML = 0 during Read, Modify and ML = 0 during Modify and Write. Not available
Write cycles.

10. Indexed Across Page Extra read of invalid address. Extra read of last instruction Extra read of invalid address.
Boundary (d) ,y; a,x; a,y (Note 1) fetch.

11 . RDY Pulled During Write Ignored (E = 1) for W65C802 only. Processor stops Ignored
Cycle. Processor stops (E = 0).

12. WAI and STP Instructions. Available Available Not available

13. Unused OP Codes One reserved OP Code specified No operation Unknown and some "hang
as WDM will be used in future up" processor.
systems. The W65C816 perlorms
a no-operation.

14. Bank Address Handling PBR = 00 after reset or interrupts. Not available Not available

15. R/W During Read-Modify- E'= 1, R/W = 0 during Modify and R/W = 0 only during Write cycle R/W = 0 during Modify and
Write Instructions Write cy~s. Write cycles.

E = 0, R/W = 0 only during
Write cycle.

16. Pin 7 W65C802 = SYNC. SYNC SYNC
W65C816 = VPA

17. COP Instruction Available Not available Not available
Signatures 00-7F user defined
Signatures 80-FF reserved I

Note 1. See Caveat section for additional information.

13

~--~~

- - -- '"

65C816 Data Sheet

W65C802 and W65C816
Microprocessor Addressing Modes
The W65C816 is capable of directly addressing 16 MBytes of memory.
This address space has special significance within 6ertain addressing
modes, as fo'iows: i
Reset and Interrupt Vectors
The Reset and Interrupt vectors use the majority of t~e fixed addresses
between OOFFEO and OOFFFF. i I

Stack
The Stack may use memory from 000000 to OOFFFF. The effective ad­
dress of Stack and Stack Relative addressing modes will always be within
this range.

Direct
The Direct addressing modes are usually used to store memory registers
and pOinters. The effective address generated by Direct, Direct,X and
Direct,Y addressing modes is always in Bank 0 (OOOOoo-OOFFFF).

Program Address Space
The Program Bank register is not affected by the Relative, Relative Long ,
Absolute, Absolute Indirect, and Absolute Indexed Indirect addressing
modes or by incrementing the Program Counter from FFFF. The only
instructions that affect the Program Bank register are: RTI, RTL, JML,
JSL, and JMP Absolute Long. Program code may exceed 64K bytes al­
though code segments may not span bank boundaries.

Data Address Space
The data address space is contiguous throughout the 16 MByte address
space. Words, arrays, records, or any data structures may span 64 KByte
bank boundaries with no compromise in code efficiency. The following
addressing modes generate 24-bit effective addresses:
• Direct Indexed Indirect (d,x) ,
• Direct Indirect Indexed (d),y
• ,Direct Indirect (d)
• Direct Indirect Long [dJ
• Direct Indirect Long Indexed [d).y

•• Absolute a
• Absolute a,x
• Absolute a,y
• Absolute Long al
• Absolute Long Indexed al,x
• Stack' Relative Indirect Indexed (d,s),y

The following addressing mode desc'iptions provide additional detail as
to how effective addresses are calculated.

Twenty-four addressing modes are available for use with the W65C802
and W65C816 microprocessors. The "long" addressing modes may be
used with the W65C802; however, the high byte of the address is not
available to the hardware. Detailed descriptions o(the 24 addressing
modes are as follows:

1. Immediate Addressing-#
The operand is the second byte (second and third bytes when in the
IS-bit mode) of the instruction ,

2. Absolute-a
With Absolute addressing the second and third bytes of the instruc­
tion form the low-order 16 bits of the effective address. The Data
Bank Register contains the high-order 8 bits of the operand address.

addrl addrh Instruction: I opcode
Operand ~------~--------~------~

Address: DBR addrh addrl

3. Absolute Long-al
The second , third, and fourth byte of the instruction form the 24-bit
effective address.

InstruclJon: I opcode addrl addrh baddr Operand '---C.-__ --' ______ --1. ______ --L. ______ -1

Address: baddr addrh addrl

4. Direct-d
The second byte of the instruction is added to the Direct Register
(D) to form the effective address, An additional cycle is required

when the Di~ect Register is not page aligned (DL not equal 0) . The
Bank register ... · i_s_a_lw __ ay_s __ o,' ____ -,
Instruction: opcode

I~~ ____ L-____ ~

Operand
Address: 00

5. Accumulator-A

Direct Register

offset

effective address

This form of addressing always uses a Single byte instruction. The
operand is the Accumulator.

6. Implied-I
Implied addressing uses a single byte instruction. The operand is
implicitly defi,n.ed by the instruction.

7. Direct Indirect Indexed-(d),y
This address mode is often referred to as Indirect,Y. The second
byte of the instruction is added to the Direct Register (D). The IS-bit
contents of this memory location is then combined with the Data
Bank register to form a 24-bit base address. The Y Index Register is
added to the base address to form the effective address.

Instruction: I L __ o.:...p_c_o_d_e~,--_o_f_fs_e_t_.J

"

I 00
then:

I 00

+1 DBR

1
+

Operand
Addre .. :

..
Direct Register

offset

direct address

(direct address)

base address

Y Reg

effective address

8. Direct Indirect Long Indexed-[d],y
With this addressing mode, the 24-bit base address is pointed to by
the sum of the second byte of the instruction and the Direct
Register, The effective address is th is 24-bit base address plus the Y
Index Register.

fnstructlon: L..1 __ o,,-p_c_o_d_e---,,--_o_f_fs_e_t-,

then:

Operand
AddreSl:

00

+

+

Direct Register

offset

direct address

(d irect address)

Y Reg

effective address

9. Direct Indexed Indlrect-(d,x)
This address mode is often referred to as Indlrect,X. The second
byte of the instruction is added to the sum of the Direct Register
and the X Index Register. The result points to the low-order 16 bits
of the effective address. The Data Bank Reg istercontains the high­
order 8 bits of the effective address.

14

65C816 Data She.et

Instruction: opcode oflset '--'--_ ----I. ___ -J

then:
\

\

·1

00

00

DBR

+

\

+\

Direct Register

oifset

direct address
I I :
: : X Reg

------------~-----

1 address ·

I
(address)

----------------------------Operand
Address: \ el1ective address

10. Direct Indexed With X-d,x
The second byte of the instruction is added to the sum of the Direct
Register and the X Index Register to form the 16-bit ellective
address. The operand is always in Bank O.

Instruction: 1 ope ode oftset

Direct Register

+ offset

\ direct address

+\ X Reg

Operand
\ Address: 00 effective address

11. Direct Indexed With Y-d,y
The second byte of the instruction is added to the sum of the Direct
Register and the Y Index Register to lorm the 16-bit effective
address. The operand is always in Bank O.

Instruction: 1 opcode offset

Direct Register

+ oflset

\ direct address

+\ Y Reg

Operand
1 effective address Address: 00

12. Absolute Indexed With X-a,x
The second and third bytes of the instruction are added to the
X Index Register to form the low-order 16 bits of the el1ective ad­
dress. The Data Bank Register contains the high-order 8 bits of the
el1ective address.

Instruction: 1

Operand
Address:

opcode

DBR

\ addrl addrh

1 addrh addrl

+1 X Reg

effective address

13. Absolute Long Indexed With X-al,x
The second. third and fourth bytes of ttle instruction form a 24-bil
base address. The effective address is the sum of this 24-bit address
and the X Index Register.

In.tr~cllon: I opcode I addrl addrh baddr

baddr 1 addrh addrl

+ I X Reg

Operand
Addr, .. : effective address

14. Absolute Indexed With Y-a,y
The sec.ond and third bytes of the instruction are added to the
Y I ndex Register to form the low-order 16 bits of the effective ad­
dress. The Data Bank Register contains the high-order8 bits of the
effective address.

In,tructlon: I

Operand
Addre .. :

opcode

DBR

\ addrl addrh

\ addrh addrl

+ \ Y Reg

effective address

15. Program Counter Relatlve-r
This address mode. referred to as Relative Addressing, Is used only
with fhe Branch Instructions. If the condition being tested is met.
the second byte of the instruction is added to the Program Counter.
whiCh has been updated to pOint to the opcode of the next instruc­
tion. The offset is a signed 8-bi t quantity in the range from -128 to
127. The Program Bank Regisler is not affeCled.

16. Program Counter Relative Long-rl
This address mode. referred to as Relative Long Addressing. is used
only with the Unconditional Branch Long Instruction (BRL) and the
Push Effective Relative instruction (PER). The second and th ird
byles of the instruction are added to the Program Counter. which
has biien updated to point to the opcode of the next Instruction. With
the branch Instruction, the Program Counter is loaded with the
result. With Ihe Push Effective Relative Instruction, the result is
stored on the stack. The offset is a signed 16-bit quantity in the range
from -32768 to 32767. The Program Bank Register is not afiected.

17. Absolute Indlrect-(a)
The second and third bytes of the instruCtion form an address to a
pointer in Bank O. The Program Counter is loaded with the first and
second bytes atthis pointer. With the Jump Long (JML) instruction,
the Program Bank Register is loaded with the third byte of the
pointer.

In.tructlon: .. I __ o.:..p_c_o_d_e-<,-_ad_d_r_I __ -,-__ a_d_d_r_h---l

Indirect Address = 00

New PC = (indirect address)
with ;JML:
N~w PC = (indirect address)
New PBR = (indirect address +2)

addrh addrl

18. Direct Indlrecl-(d)

15

The second byte of the instruction is added to the Direct Register to
form a pointer to the low-order 16 bits of the effective address. The
Data Bank Register contains the high-order 8 bits of the eHective
address.

In.t~ctlon: .. 1 __ o.:..P_c_o_d_e-<,-_o_f_ls_e_t_-,

\

then:

1

+\
Operand

1 Address:

00

00

DBR

+

Direct Register

I offset

direct address

(direct address)

effective address

-
-

-

-
-

-

65C816 Data Sheet

19. Direct Indirect Long-[d]
The second byte of the instruction is added to the Direct Register to
form a pointer to the 24-bit effective address.

Instrucllon: I opcode offset

Direct Register. I
i

' \ .. offsElt

00 direct address' , ! I
then: I
Operand
Addrell: (direct address)

20. Absolute Indexed Indlrect-(a,x)
The second and third bytes of the instruction' are added to the
X Index Registerto form a 16-bit pointer in Bank O. The contents of
this pointer are loaded in the Program Counter. the Program Bank
Register is not changed.

Instrucllon: L.I _o.:...p_c_o_d_e--..JL-_a_d_d_r_I_..L_a_d_d_rh_.....J

addrh addrl

X Reg

PBR address

then:
PC = (address)

21. Stack-s
Stack addressing refers to all instructions that push or pull data
from the stack, such as Push, Pull, Jump to Subroutine, Return from
Subroutine, Interrupts, and Return from Interrupt. The bank ad­
dress is always O. Interrupt Vectors are always fetched from Bank O.

22. Stack Relative-d,s
The low-order 16 bits of the effective address is 'formed from the
sum of the second byte of the instruction and the Stack Pointer. The
high-order 8 bits of the effective address is always zero. The relative
offset is an unsigned a-bit quantity in the range of 0 to 255.

Instrucllon: I opcode offset

Stack Pointer

+ I offset

Operand
Address: 00 effective address

i
23. Stack Relative Indirect Indexed-(d,s),y

The second',byte of the instruction is added to the Stack Pointer to
form a point~r to the low-order 16-bit base address in Bank O. The
Data Bank Rjlgister contains the high-order a bits of the base ad­
dress. The ef~ective address is the sum of the 24-bit base address
and the Y Index Register.

Instrucllon:! \ opcode IL---'-__ --..J ____ ~ offset

then:

Operand
Address:

I Stack Pointer

I " I + offset

00 S + offset

S + offset

+ I DBR
----~----------
\ b3se address

+ Y Reg

effective address
,

24. Block Source Bank, Destination Bank-xyc

16

This addressing mode is used by the Block Move instructions. The
second byte'bf the instruction contains the high-order 8 bits of the
destination'address. The Y index Register contains the low-order 16
bits of the destination address. The third byte of the instruction
contains the~high-order 8 bits of the source address. The X Index
Register contains the low-order 16 bits of the source address. The
C Accumulator contains one less than the number of bytes to move.
The second byte of the block move instructions is also loaded into
the Data B<inrk_R_e...:g=-i_st_e_r.~ _________ ~

Instrucllon; I opcode dstbnk srcbnk

Source
Address:
Destlnallonj
Addresa:

" "

"

dstbnk DBR

scrbnk

DBR

X Reg

Y Reg

Increment (MVN) or decrement (MVP) X and Y.
Decrement C (if greater than zero), then PC+3 - PC.

ADC
AND
ASL
BCC
BCS
BEQ
BIT
BMI
BNE
BPL
BRA
BRK
BRL
BVC
BVS
CLC
CLD
CLI
CLV
CMP
COP
CPX
CPY
DEC
DEX
DEY
EOR
INC
INX
INY
JML
JMP
JSL
JSR
LDA
LOX
LOY
LSR
MVN
MVP
NOP
ORA
PEA

PEl

PER

65C816 Data Sheet

W65C802 and W65C816 Instruction Set-Alphabetical Sequence

Add Memory to Accumulator with .Carry
"AND" Memory with Accumulator '
Shift One Bit Left, Memory or Accumulator
Branch on Carry Clear (Pc = 0)
Branch on Carry Set (Pc = 1) I
Branch if Equal (pz = 1) ,
Bit Test
Branch if Result Minus (PN = 1)
Branch if Not Equal (pz = 0)
Branch if Result Plus (PN = 0)
Branch Always
Force Break
Branch Always Long
Branch on Overflow Clear (Pv = 0)
Branch on Overflow Set (Pv = 1)
Clear Carry Flag
Clear Decimal Mode
Clear Interrupt Disable Bit
Clear Overflow Flag
Compare Memory and Accumulator
Coprocessor
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory or Accumulator by One
Decrement Index X by One
Decrement Index Y by One
"Exci,usive OR" Memory with Accumulator
Increment Memory or Accumulator by One
Increment Index X by One '
Increment Index Y by One
Jump Long
Jump to New Location
Jump Subroutine Long
Jump to New Location Saving Return Address
Load Accumulator with Memory
Load Index X with Memory
Load Index Y with Memory
Shift One Bit Right (Memory or Accumulator)
Block Move Negative
Block Move Positive
No Operation
"OR" Memory with Accumulator
Push Effective Absolute Address on Stack (or Push Immediate
Data on Stack)
Push Effective Indirect Address on Stack (or Push Direct
Data on Stack)
Push Effective Program Counter Relative Address on Stack

PHA
PHB
PHD
PH~
PHP;
PHXI
PH~
PLA
PLB
PLD
PLP
PLX
PLY
REP
ROL
ROR
RTI
RTL
RTS
SBC
SEC
SED :
SEI
SEP

1 STA
STP
STX
STY
STZ
TAX
TAY
TCO
TCS
TDe
TR9
TSB
TSC
TSX
TXA
TXS
TXY
TYA
TYX
WAI
WDM
XBA
XCE

Push Accumulator on Stack
Push Data Bank Register on Stack
Push Direct Register on Stack
Push Program Bank Register on Stack
Push Processor Status on Stack
Push Index X on Stack
Push Index Y on Stack
Pull Accumulator from Stack
Pull Data Bank Register from Stack
Pull Direct Register from Stack
Pull Processor Status from Stack
Pull Index X from Stack
Pull Index Y form Stack
Reset Status Bits
Rotate One Bit Left (Memory or Accumulator)
Rotate One Bil Right (Memory or Accumulator)
Return from Interrupt
Return from Subroutine Long
Return from Subroutine
Subtract Memory from Accumulator with Borrow
Set Carry Flag
Set Decimal Mode
Set Interrupt Disable Status
Set Processor Status Bite
Store Accumulator in Memory
Stop the Clock
Store Index X in Memory
Store Index Y in Memory
Store Zero in Memory
Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer C Accumulator to Direct Register
Transfer C Accumulator to Stack Pointer Register
Transfer Direct Register to C Accumulator
Test and Reset Bit
Test and Set Bit
Transfer Stack Pointer Register to C A'ccumulator
Transfer Stack Pointer Register to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer Register
Transfer Index X to Index Y
Transfer Index Y to Accumulator
Transfer Index Y to Index X
Wait for Interrupt
Reserved for Future Use
Exchange B and A Accumulator
Exchange Carry and Emulation Bits

For alternate mnemonics. see Table 7.

E=l
OOFFFE,F -IRQ/BRK Hardware/Software
OOFFFC,D-RESET Hardware
OOFFFA,B -NMI Hardware
00FFF8,9 -ABORT Hardware
00FFF6,7 -(Reserved)
00FFF4,S -COP Software

Vector Locations

E=O
OOFFEE,F -IRQ
OOFFEC,D-~erved)
OOfFEA,B-NMI
00fFE8,9 -ABORT
00FFE6,7 -BRK
00F.FE4,S -COP

The VP output is low during the two cycles used for vector location access.
When an interrupt is executed, D = 0 and I = 1 in Status Register p,

17

Hardware

Hardware
Hardware
Software
Software

r

M
S
0

- 0 , 2

0
BRKs ORA (d.x) COPs
2 8 2 6 2*8

1
BPL r ORA (d).y ORA (d)
2 2 2 5 2-5

2
JSR a AND (d.x) JSL al
3 6 2 6 4 * 8

3
BMI r AND (d),y AND (d)
2 2 2 5 2 - 5

4
RTI s EOR (d,x) WDM
1 7 2 6 2 * 2

5
BVC r EOR (d),y EOR (d)
2 2 2 5 2 - 5

6
RTSs ADC (d.x) PER s
1 6 2 6 3*6

-
7

BVS r ADC (d).y AOC (d)
2 2 2 5 2-5

8
ORA r STA (d.x) BRL rl
2-2 2 6 3 * 3

9
BCCr STA (d),y STA (d)
2 2 2 6 2-5 - A LDY # LOA (d,x) LOX #
2 2 2 6 2 2

B
BCSr LDA (d),y LOA (d)
2 2 2 5 2-5

C
CPY H CMP (d,x) REP #
2 2 2 6 2*3

D
BNEr CMP (d),y CMP (d)
2 2 2 5 2-5

E
CPX # SBC (d.x) SEP H
2 2 2 6 2*3

F eEQ r sec (d).y sec (d)
2 2 2 5 2-5

0 1 2

65C816 Data Sheet

Opcode Matrix

LSD

3 4 5 6 7 8 9 A 8 C

ORA d.s TSB d pRA d ASL d ORA [d) PHP s ORA. ASLA PHD s TSB a
2 * 4 2 - 5 i 2 3 2 5 2 * 6 1 3 2 2; 1 2 1 * 4 3-6

ORA~d.s).y TRB d O:RA d.x ASL d.x ORA [d).y CLCi ORAa!y INCA TCSI TRB a
2 7 2-5 ,2 ,4 2 6 2 - 6 1 2 3 41 i- 2 1 * 2 3-6

AND d,s BIT d ANID d ROLd AND [d) PLP s AND 1 ROLA PLD s BIT a
2*4 2 3 2 3 2 5 2*6 1 4 2 2 1 2 1 * 5 3 4

AND ~d,s) ,y BIT d,x AND d,x ROL d.x AND [d].y SECi AND a,y DECA TSC i BIT a,x
2 7 2 - 4 2 4 2 6 2 - 6 1 2 3 4 1 -2 1 *2 3 - 4

EOR d.s MVP xyc EOR d LSR d EOR [d) PHA s EOR # LSR A PHK s JMP a
2 * 4 3 * 7 , ~ 3 2 5 2 * 6 , 3 2 2 1 2 1 *3 3 3

EOR ~d,S),y MVN xyc EOR d,x LSR d.x EOR [d].y CLii EOR a,y PHY s TCD i JMP al
2 7 3*7 2 4 2 6 2 - 6 1 2 3 4 1 -3 1 * 2 4*4

AD~d :S STZd ADCd RORd ADC [d) PLAs ADC # RORA RTL s JMP (a)
2 4 2 -3 2 3 2 5 2 * 6 1 4 2 2 1 2 1 *6 3 5

AOC~d,s),y STZ d,x ADC d.x ROR d.x AOCJd].y SEI i ADC a!y PLY s TDCi JMP (a.x)
2 7 2-4 2 4 2 6 2 6 1 2 3 4 : 1 - 4 1 *2 3-6

STA d,s STY d STA d STX d STA [d) DEY i BIT ~, TXA i PHB s STY a
2*4 2 3 2 3 2 3 2 * 6 1 2 2 - 2 1 2 1 * 3 3 4

STA ~,s),y STY d,x STAd,x STX d,y STAJd) .y TYAi STA a.y TXSi TXY i STZa
2 7 2 4 2 4 2 4 2 6 1 2 3 5 1 2 1 * 2 3-4

LDA d.s LOYd LDAd LDX d LDA [d) TAY i LOA # TAX I PLB s LOY a
2*4 2 3 2 3 2 3 2*6 1 2 2 2 1 2 1 * 4 3 4

LOA ~d,s),y LOY d,x LDA d,x LOX d ,y LDAJd),y CLV I LOA a,y TSX I TYX i LDYa,x
2 7 2 4 2 4 2 4 2 6 1 2 3 4 , 1 2 1 *2 3 4

CMP d.s CPYd CMPd OECd CMP [d) INYi CMP# DEX i WAli CPYa
2*4 2 3 ' 2 3 2 5 2*6 1 2 2 2! 1 2 1 - 3 3 4

CMP ~d,s),y PEl s CMP d,x DEC d,x CMP [d].y CLDi CMPa.y PHX s STP i JML (a)
2 7 2 * 6 2 4 2 6 2 * 6 1 2 3 4; 1 - 3 1 - 3 3*6

SBC d,s CPXd SBCd INCd SBC [d) INX i SBC H NOP i xeA i CPXa
2 * 4 2 3 2 3 2 5 2 * 6 1 2 2 2 1 2 1 *3 3 4

sec ~d,s),y PEA s sec d,X INC d,X sec IdLy SEDi sec a,y PLX s XCEi JSR (a.x)
2 7 3*5 2 4 2 6 2 - 6 1 2 3 4 1 - 4 1 *2 3-6

3 4 5 6 7 8 9 A B C

symbol addressing mode symbol addressing mode

H immediate [d) direct in'direct long
A accumulator [d),y direct indirect long indexed
r program counter relative a absolute
rl program counter relative long a,X absolute indexed (with x)
i implied a,y absolute indexed (with y)
s stack al absolute long
d direct al,x absolutEllong indexed
d,x direct indexed (with x) d,s stack relative
d.y direct indexed (with y) (d,s),y stack relative indirect indexed
(d) direct indirect (a) absolute indirect
(d,x) direct indexed indirect (a,x) absolute indexed indirect
(d),y direct indirect indexed xyc block move

Op Code Matrix Legend

INSTRUCTION
MNEMONIC * = New W65CS16/S02 Opcodes

• = New W65C02 Opcodes
Blank = NMOS 6502 Opcodes

ADDRESSING
MODE

BASE
NO. BYTES

18

BASE
NO. CYCLES

M
S
0

0 E F

ORAa ASLa ORAal
0

3 4 3 6 4 * 5

ORAa.x ASL a,x ORA al,.
1

3 4 3 7 4*5

AND a ROL a ANDal
2

3 4 3 6 4 ~ 5

AND a,x ROL a,x AND al,)
3

3 4 3 7 4 * 5

EOR a LSR a EOR al
4

3 4 3 6 4 * 5

EOR a,x LSR a.x EORal,
5

3 4 3 7 4 * 5

AOCa RORa AOCal
6

3 4 3 6 4 * 5

AOCa,x ROR a,x AOCal ,
7

3 4 3 7 4 * 5

STAa STXa STAal
8

3 4 3 4 4 * 5

STAa.x STZa.x STAal.x
9

3 5 3-5 4 * 5

LOA a LOXa LOAal
A

3 4 3 4 4 * 5

LOA a.x LDX a,Y LDA al,x
B

3 4 3 4 4 * 5

CMPa DECa CMPal
C

3 4 3 6 4*5

CMP a,x DEC a.x CMPal,
0

3 4 3 7 4 * 5

SeCa INCa SeCal
E

3 4 3 6 4 * 5

sec a,x INC a,x sec al,x
F

3 4 3 7 4 * 5

0 E F

MNE·
MON'C

ADC
AND
AS,
BCC
BCS

BEO
B,T
BMI
BNE
BPL

BRA
BRK
BRL
BVC
BVS

CLO
OLD
Ot.!
OLV
CMP

COP
CPX
Cpy
DEC
OEX

DEY
EOA
INC
INX
INY

JML
JMP
JSL
JSR
LOA

LOX
LOY
LSR
MVN
MVP

NOP
ORA
PEA

PEl

PER

PHA
PHB
PHD
PHI(
PHP

PHX
PHY
PLA
PLB
PLO

PLP
PLX
PLY
REP

ROl

ROR
AT!
ATL
FI TS
SBC

SEC
SED
SEI
SEP
STA

S1P
STX
STY
STZ
TAX

TAY
TCO
TCS
TOC
TAB

Tsa
TSC
TSX
TXA
TXS

TXV
TYA
TYX
WAI
WOM

XBA
XCE

65C816 Data Sheet

Operation, Operation Codes, and Status Register

~ .. M ..
~

.. - • ;; ... c(- ~ ~ .,; .,;

OPERATION , 2 3 • 5 6 7 8 9 '0 " A 'M' C A 69 60 6F 65 7, 77 6' 75
MM-A 29 20 2F 25 31 37 2' 35
C- mil ~-o OE 06 0'1 '6
BRANCH In:;:
BRANCH IF C : I

BRANCH IF Z • 1
AIIM (NOTE I) 89 2C 24 34
BRANCH IF N : 1
BRANCH IF Z : 0
BRANCH IF N : 0

BRANCH ALWAYS
BREAK (NOTE 2)
BRANCH LONG ALWAYS
BRANCH IF V : 0
BRANCH IF V : ,

0 - 0 18
0 - 0 08
0- I

~I 0 - V
A·M C9 00 OF C5 01 07 CI 05

CO· PROCESSOR
X·M EO EC E4
Y· M CO CC C4
DECREMENT CE C6 3A 06 x· , - X CA
y., -Y 88
AVM - A 49 40 4F 4S 51 57 ., 55
INCREMENTS EE E6 1'1 F6
X· 1- X E8
y. I - Y C8

JUMP LONG TO NEW LOC.
JUMP TO NEW LOC, 4C: 5C
JUMP LONG TO SUB. 22
JUMP TO SUB. 20
M - A A9 AD 'IF AS B, B7 A, BS

M - X '12 AE A6 B6
M-Y '10 AC A. B4
O-~-C 4E 46 4'1 56
1.1 - ACKWARD
M - M FORWARO

NO OPERATION EA
AVM - A 09 00 OF OS 1\ 17 0 1 15
Mpc + 1, Mpc • 2 - Ms - 1, Ms
S - 2·· S
MCd). M(d. I) - Ms·,. Ms
S· 2 - S
Mpc • rl , Mope + rl + 1 - Ms - 1, Ms
S -2 - S

A - MS. S -, - S
DBA - MS. S - , - S
0- Ms. M. - I, S - 2 - S
PBR - Ms, S - I - S
P - Ms. S· I - S

X Ms,8-1 S
Y - Ms, S -, - S
S., - S. M. - A
5 + , - 5, Ms - DBA
S + 2 - S. Ms -,. Ms - 0
S + , S. M. p
S +, - S, Ms - X
~. , - S. M. - Y
M~P - P C2

41sn 0 1 -O J 2E 26 2'1 36

Lc- lli2L:]jOJ 6E 66 6'1 76

RTRN FROM INT.
RTRN FROM SUB. LONG
RTRN SUBAOUTINE
A-M-C"-A ED EO Ef ES F, F7 E' FS

' - C 3a
, - 0 F8
I -I 78
MVP - P E2
A - M 80 6F 85 91 97 81 95

STOP (1- ~21 DB
x- M 8E as 96
Y - M 8e e. s.
00 - M 9C 64 74
A - X AA

A - Y '18
C - 0 SB
c-s IB
O - C 7B

IC ,.
AVM - M OC 04
S - C 3B
s - x BA
X- A 8A
X - S 9A

X-Y 9B
Y- A 98
Y - X BB
0- ROV CB
NO OPERATION (RESERVED) 42

B A EB o-e fB

Noles: i I

1. Bi t immedIate N and V lIags nol alleclqd. When M :: D. M15 - Nand M14 -V.
2. Break Bit (S) In Sial us regis,er IndlC8T hard .. are or soll ... re break.

I

..

.;

'2
70
30
IE

3C

00

DE

SO
FE

BO

BC
SE

'0

3E

7E

fO

90

9E

". M ...
;; .; 'I: ~ ~ ~ !!. . ..
13 ,4 '5 16 17 18 ,9 20 2,

7F 79 72 87
3F 39 32 27

90
BO

FO
1

30
po
.'0

po
00

82
50
70

OF 09 02 07

02

5F 59 52 H

DC
6C 7C

FC
BF B9 B2 A7 A3

BE

IF 19 12 07
F4

04

r 62

I;
OB
4B
08

IS~
68
AB
2B

IFA
7A

"

40
6B
60

FF F9 F2 E7

9f 911 92 87

I

3. * = New W65C816/802 Instructions
• :: New W65C02 Instructions
Blank· NMOS 6502

"t ...
22

63
23

C3

43

B3

03

E3

83

~
;;- ...
~ .. "
23 24

73
33

03

53

54 ..
13

F3

83

PROCESSOR
STATUS CODE

7 6 5 4 3 2 ,
N V M X 0 I Z

N V I B 0 I Z
N V Z
N Z
N Z

M,M. Z

N
0

N
N
N
N

N
N
N
N
N

N
N
N
0

N

N
N
N

N V
N
N
N V
N

N
N V

N V

N V

N
N
N

N

N
N
N

N
N
N

N

• 0 i

0
0

0 I

..

.
M X 0 I

M it. e i

M :i: e i

;
i

M it. e I

• ACd
.. Sub1ract
1\ AND

i
i
Z
Z
Z
Z
Z
Z
Z
Z

Z
Z
Z
Z

Z

Z
Z
Z
Z

i.
z
Z

Z
z

Z

i.

i
Z
Z

Z
Z
Z
Z
Z
Z

Z
Z
Z

Z

MNE·
0 MONIC

C E- o
C E. ,
C ADC

C
AND
ASL
BCC
BCS

BEO
BIT
BMI
BNE
BPL

• BRA
BAt<

* BRL
BVC
BVS

0 OLC
OLD
OLI

C
ClY
CMP

C * COP
CPx

C CPY
DEC
DEX

DEY
EOR
INC
INX
INY

* JML
JMP
JSL
JSR
LOA

LOX

C
,OY
LSR • MVN • MVP

NOP
ORA • PEA

• PEl

• PER

PHA
PHB

• PHO

• PHI(
PHP

• PHX

• PHY
PLA • PLB

• PL D

C PLP
PLX
PLY C. AEP

C AOL

C AOR
C AT!

* RTL

C
RTS
SBC

I sec
SED

c * SEI
SEP
STA

• STP
STX
STY

• STZ
TAX

TAY • TCO • TCS • TOC

• TFIB

• TSB

• TSC
TSX
TXA
TXS

* TXY
TYA • TYX

• WAI

• WOM

• XBA
E • XCE

V OR
~ ExcJu$tvO OR.

_ ..

)' 1
65C816 Data Sheet ~

!

Detailed Instruction Operation
ADDRESS MODE CYCLE Vii, iiI. YOA, VPA ADDRESS BUS DATA BUS A/W

I

ADDRESS MOO£

1. Immediate"
(LOY.CPY.CPX.LOX.ORA.
ANO.EOA,ADC,BIT,LDA,
CMP.SBC REP.SEP)
(14 Qp Codes)
(2 and :1 bytes)
(2 and J cycles)

2a. Absolute I
(BIT,STY,STZ,LDY,
CPY,CPX,STX,LDX.
ORA,ANO,EOR,AOC,
STA.LDA,CMP.SBC)
(18 Op Coda,)
(3 byt ..)
(4 and 5 cycles)

2b. Absolute (R~M-W) •

(ASL.ROL.LSR.ROR
OEC.INC.TSB.TRB)
(SOp Codes)
(3 byleS)
(6 and 6 cycles)

2c. Absolute (JUMP) •
(JMP)(4C)
(lOp COde)
(3 byte!'
(3 cycles)

l.
2.

(1)(8) 20 .

l.
2.
3.

'. III 481.

l.
2.
3. ..

(1) ...
(3) 5.
(1) 60

6.

1.
2.
3.

2d, Absolute (Jump to 1.
subroutine) I 2.
(JSR) 3.
(1 Op Code) 4.
(3 bytos) 5.
(6 cycles) 6.
(dillersnt order from N6502)

*3a. Absolute Long I' 1
(ORA.ANO.EOR.AOC 2.
STA.LOA.CMP.SBC) 3
(8 Cp Codes) 4.
(4 byleS) 5
(5 and 6 cycles) (1) Sa,

*3b Absolute Long (JUMP) ,I 1.
(JMP) 2
11 Op Coda) 3.
(4 bytes) 4.
(4 cycles) 1.

*3c. Absolute Long (Jump to
Subrouline Long) I'
(JSL)
(lOp Code)
(4 byt ..)
(7 cyeln)

4a Direct d
(9IT,STZ,STY.lDY.
CPV,CPX,STX,lDX,
OAA.AND.EOA,AOC,
STA,lOA,CMP,SeC)
(18 Op Codes)
(2 byles)
(3,4 and 5 cycles)

4b Direct (R·M-W) d
(ASL.AOL,LSR,AOR
DEC, INC, T5B. TAB)
(6 Op Codes)
(2 by1es)
(5,6,7 and 8 cycles)

1.
2.
3.

•
5
6.
1.
8
1.

1.
2.

(2) 2 • •
3

(I) 3a.

1
2.

(2) 2,
3

(1) 3.
(3) 4
(1) 5.

5.
5 Accumulalor A ,

(A5l .INC.AOl ,OEC,l5A.AOA) 2.
(6 Op COdeS)
(1 byte)
(2 cycles)

Sa: Implied I
(DEY, INY, INX. DEX, NOP,
XCE. TYA, TAY.TXA, TXS.
TAX, TSX, TCS, TSC, TCO.
TOC.TXY.TYX.CLC.SEC.
CLI.SEl.CLV.CLO.SEO)

1.
2.

(25 Op Codes)
(' byle)
(2 cycles)

*6b. Implied I
(XBA)
(1 Op Code)
(I byte)
(3 cycles)

• 6<;. Walt For Interrupt
(WAil
(t Op Code)
(' byle)
(3 cycles)

• 6d SIOp-The-Clock
ISTP)
(lOp Coda)
(1 byle)
(J cycl9!o)

SM 21a Slack

1
2.
J

1.
(9) 2

3.
IRQ,NMI 1.

l.
2

RES"" J.
ffi=o Ie
A'ES=o lb
A'ES=1 1 • •

I
1
o
o
o
o
o

1
o
o
o
o
o

1
o
o
o

I

1
o
o
o

I
o
o
I
1

o
1

I

o
o
o
o
o

1 PBA,PC
paR,pc.,
PBA.PC+2

1 paR,PC;
paR,PC·'
PBR,PC~2
OeR,A~
DBR.AA;+'

I

I
1 PBA,pd
1 PBR,PC+'
1 PBR,PC+2
o DBR,AA '
o DBR.AA+l
o OBR,AA+'
o OBA,AA+"
o OBR.AA

PBR.PC
PBR,PC+'
PBR,PC+2
PBA, NEW PC

1 PBA,PC,
t PBA,PC+'

PBR.PC·2
PBA.PC+2
O.S
0.5-1

1 PBR,NEW PC

1 PBA,PC
PBR.PC+'
PBA.PC·2
PBR.PC+3
AAB,AA
AAB,AA·'

PBR.PC
PBR,PC+ '
PBR,PC+2
PBR.PC-3
NEW P~R.PC

1 PBR.pd
PBR,PC+I
PBA,PC+2
O.S

~'~A.pd~J
0.5-1
0.S-2

Op Code
10L
10H

Op Code
AAL
AAH
Data low
Oala High

Op Code
AAL
AAH
Dala Low
Oala High
10
Dala High
Data Low

Op Code
NEW PCl
NEW PCH
OpCode

Op Code
NEW PCL
NEW PCH

1
1

1
110
1'0

10 1
PCH 0
PCl 0
Nelli Op COde ,

Op Code ,
AAl 1
AAH ,
AAB 1
Dala low 1/ 0
Oala High I/O

Op Code
NEW PCl
NEW PCH
NEW BR
Op Code

Op Code
NEW PCl
NEW PCH
PBR
10
NEW peA
PCH
PCL

1
1
I
o

t NEW PBR.PC Nexi Op Code ,

1 PBA,PC I Op Code
P8R,PC" DO
PBA,PCt 1 10 1
0,0+00 ' Dala Low 110
0,0+00·' Dala H igh 1/0

I P8R.PC
PBA.PC·'
PBA,PC'"
0,0+00
0. 0+00+1

o 0,0+00.'
o 0,0.00+1
o 0,0.00

PBR.PC
PBA,PC+'

1 PBR.PC
o PBR,PC+'

PBR.PC
PBR.PC+'
PBA,PC+'

ROY

1 PBR.PC

~:~:~g: ~
1 PBR,PC+'

I

1 PBR.PC
1 PBA,PC+,

PBR,PC· '
PBR,PC·,
PBR,PC+'

1 PBA,PC.,
I PBA.PC"

Op Code
DO
10
Oala l ow
Data HIQh
10
Data High
Oalalow

Op Code
10

Op Coda
10

Op Code
10
10

Op Code
10
10
IRO(BRK)

Op Code
10
10
RES(BAK)
AES(BAK)
RES(BRK)
BEGIN

1 Oirecl Indirect Indell.ed (d),y
(ORA.ANO.EOR.AOC.
STA.LOA.CMP.SBC)
(8 Op Cades)
(2byl")
(5.6,7 and 8 eycln)

8 Dlrecl IndireCI
Indued Long [d],y
(ORA.ANO. EOR.~OC.
STA.LOA.CMP.S~C)

:: ~~e~fdes) f
(6,1 and 6 cycl ••) , I

9. Direct Indexed Indlreci (d,l)
(ORA.ANO.EOR.AOC.
STA,LDA,CMP,SBC)
(8 Op Codes)
(2 byles)
(6,7 and 8 cycles)

lOa Direcl,X d,1
(BIT.STZ.STY.Llj~.
OAA.AND.EOA.AOC,
STA.LOA,CMP,SBC)
(11 Op Codes)
(2 byles) .-
(4,5 and 6 cycleS)

tOb. Oirecl.X(A·M·W) d,.
(ASL.ROL.LSR.ROR.
OEC.INC)
(6 Op Codes)
(2 byles)
(6,7,B and 9 cyc:les)

11 Ouect,Yd,y
(STX.LOX)
(2 Op Codes)
(2 bytes)
(4.5 and 6 cycles)

12111 Absolute,X .,.w.
(BtT,lDY,STZ,
ORA.AND,EOR,AOC,
STA.LOA.CMP.SBC)
(11 Op CadeS) ,
(3 bytes)
(.(,5 and 6 cycles)

'2b. Absolute.XfA·M·W) a,.
(ASL.ROL.LSR.ROR • .
DEC.INC)
(6 Op Codes)
(3 bytes)
(7 and 9 cycles)

.'3. Absolute Long,X .1,1
(ORA.ANO.EOR.AOC.
STA.LOA.CMP.SBC)
(8 Op Codes)
(4 bytes)
(5 and 6 CVet .. ,.

14 Absolute,Y • • v
tlOX.ORA,ANO,EOR,ADC,
STA.LOA.CMP.SBC)
(51 Op Codes)
(3 bytes)
(4,5 and 8 cycles)

15. Aelative,
(BPl,BMI,BVC,BVS,BCC,
BCS.BNE.BEO.BRA)
(9 Op Codes)
(2 byles)
(2,3 and 4 cycles)

.115. Relative Long"
(BRL)
(lOp COde)
(3 byles)
(4 cycles)

17a. Absolute Indirect (a)
(JMP)
(lOp Code)
(3 byles)
(5 CYCleS)

.17b. Absolute IndirKt (a)

(JML)
(lOp Code)
(3 bytes)
(6 cycles)

• 18 Direcl Indirect Cd)
(ORA,ANO,EOA,AOC,
STA.LOA.C"P.SBC)
(8 Op Codes) "
(2 byles)
(5.6 and 7 cycles)

20 .

CYCLE yp. 'iit_ VD VPA ADDRESS BUI DATA aua
1.
2.

(2) 2 •.
3. ..

(') ...
5.

(1) 50 .

" 2.
(2) 2 • .

3. ..
5.
6.

(1) 60.

l.
2.

(2) 2 • .
l .
4.
5.
6.

(1) 60.

1.
2.

(2) 2 • .
3.
4 .

(1) 4 •.

1.
2.

(2) 2 •.
3.
4 .

. (1) 4a,
(3) 5.
(1) Sa. ..

1.
2.

(2) 2 • .
3. ..

(1) 4 • .

1.
2.
3.

(4) 3 •. ..
(1) 4a.

" 2.
3.
4.
5.

(11 Sa.
(3) 6.
(1) 1 • .

1.

l.
2.
3.
4.
5.

(1) Sa.

1.
2 .
3.

(4) 30.
4.

(1) 4 • .

1.
2.

(5) 2 •.
(8) 2b.

1.

1.
2.
3.
4.
1.

1.
2.
3. ..
5.
l.

l.
2.
3. ..
5.
6.
1.

1.
2.

(2) 2.
3-..
5 .

(I) 5 • •

1 1 PBR,PC OC) Code
o 1 PBA,PC+' 00
o 0 PBR.PC_l)0
1 0 0.0-00 ML
, 0 0,0+00.' AAH
o 0 OBR.AAti.AAL- YL 10

o OBR,A.A.Y 0.1. Low
o OBR,AA.Y+' Oala High

1 PBR.PC Op Cod.
I PBR,PC.' DO
o PBR.PC·1 10
o O,O+DO AAL

1 0 O,O.DO+' AAH
1 0 0.0+00+2 MB
, 0 AAB,AA+Y Oala Low
I 0 AAB,AA+Y+l 0.1. High

1 PBR,PC Op Code
o PBR,PC+' 00
o PBA.PC+' 10
o a PBA,PC+' 10

o o,O+OO.X AAL
o O,O+OO+X., AAH
o OBR,AA Oata Low
a DBA,AA+' Data High

1 PBR.PC Op CoO.
o PBR.PC+' DO
o PBR.PC+ 1 10
o PBR ,PC+' 10

O,O.OO+X Oata low
O.O.OO+X+l Oa'a High

1 PBR.PC Op Co,,"
1 PBR.PC+' 00
o PBA,PC+' 10
o PBR,PC+l 10
o O,D+OO+X O.'a Low
a O,D+DO+X+l 0.1. High
o O,O.OO+X.')0
o O,D.OO+X+l Data High
o O,O+OO+X Data Low

I PBR,PC Op COde
1 PBR,PC+' DO
o PBR ,PC+l 10
o PBR.PC'1 10
o O,O·OO.Y Oala Low
o O,O·DO+Y.' Data High

1 PBR.PC Op Coda
1 peA.PC+l AAL
I PBR,PC+2 AAH
o OBR,AAH,AAL+ XL)O
o OBR,AA+X Data Low
o OBR,AA+X.' Oala High

PBR.PC OPCOdo
PBR,PC+' AAL

1 1 PBR.PC-2 AAti
1 0 OBR.AAH.AAL + XL 10
o 0 DBR,AA·X Oata Low
o 0 OBR,AA.X+l Oata High
o 0 DBR.AA+X+' 10
o 0 DBR,AA+X+' Data High
o 0 OBA,AA.X O.la Low

1 PBA,PC 01' Coo.
o PBA,PC+, AAL
o PBA.PC.2 AAH
o PBR.PC-3 AAB

AAB,AA+X O.la Low
AAB.AA.X+' 0.1. High

1 1 PBA,PC Op Coo.
o 1 PBA,PC+ 1 AAL
o 1 PBR.PC+2 AAH
o 0 DBR,AAH,AAL+YL 10
1 0 DBR.AA+Y Dala Low
I 0 OBR,AA.Y.' O.ta High

, 1 PBR,PC Op COde
a PBR,PC+l OHMI
o PBA.PC+' 10
o PBR,PC+, 10

1
o
o
o
1

1

o
o

1 PBR,PC+OHN' 01' Code

1 PBR.PC
1 PBA.PC+'

PBR,PC+2
PBA.PC+2

I PBR,PC.OffMl

1 PBR.PC
I PBR,PC+'
1 PBR.PC+2
o O.AA
a O,AA.'
1 PBR.NEWPC

1 PBR.PC
PBA.PC·'
PBA,PC+2
O.M
O,M+'
O,AA+2

1 NEWPBR.PC

1 PBR.PC
1 PBR,PC+'
o PBR,PC.'
o 0.0-00

0,0+00+1
OBR,AA
DBR.A.A+'

OpCoO.
Offa.el Low
OHMt High
10
OpCoO.

OpCOdo
AAL
AAH
NEW PCL
NEWPCH
01' Code

Op COd.
AAL
AAti
NEW PCL
NEW"Cti
NEWPBR
OpC"".

OpCoOo
00
10
AAL
AAH
0 Low
DII. lo'!l'

I
1'0
110

1
1
1

110
110

1
1

1'0
110

1'0
1'0

1
1
1
1

1'0
1'0

1
1'0
1'0

1
o
o

1
1'0
110

1
1
1
1

1'0
1'0

If'

r
65C816 Data Sheet

Detailed Instruction Operation (continued)

ADDRESS MOD£ CYCLE YP. UL. VDA., VPA ADDRESS BUS DATA IUS RiW ADDRESS MODE CYCLE Yo, iii. YDA, YPA ADDAESS BUS DATA BUS RIW

·'9 D,rect Indirect l o ng Ld] I . I I PSR,PC Op COM *23 Stack Aelallve Indirect I . , , PBR,PC OpCodo

(ORA.ANO.EOA OC 2. 0 , PBR.PC·' DO Inde. ed Id ..),»" 2. 0 , PBR,PC·' SO I

STA.LDA,CflAP,SBC) 12) 2. 0 0 PBA,PC·' '0 (ORA,AND.EOR,ADC. 3. 0 0 PSR'-PC·' .0 I

(8 Op Cod ..) 3. 0 0.0-00 AAL STA,lOA,C,,"P.SOC) .. , 0 O,S+SO L ,
(2 by1es) '. 0 0.0 4 00+1 AAH 18 Op Codes) 5. , 0 0,5·$0., AAH I

(6,7 and 8 cyclel) 5. 0 0,0+00+2 AIIB 12bVlOS) 6. 0 0 0.5+50+1 .0 ,
6. 0 AAB.AA Oalll Low I/O (7 and 8 Cycles) 7. , 0 DBR.AA+V Da'a Low I/O

(') sa 0 AA8.AA+1 Dal. HIQn I/O ") h . I 0 DBR,AA+Y+' Oala High I/O

20.1 Abso lute Indued Indirect Ca. l) 1 , I PBR,PC OpCodo I .2 Block, Move POliti"e

[
, PBR.PC OpCodo

IJ MP) 2 1 PBR.PC·, l (forward) arc 2. 0 PSR,PC·' DB ..

,l Op Coo.) 3 ~BR .PC~2 AAH I""VP) 3. 0 I PBA,PC+2 SBA

(3 b y1et) • ~:=::~:~
.0 II Op Code) N-2 .t. 1 0 SBA.X Source Oala

(6 cycles) 5. NEW PCl (3 bytes) ~ BVI_ 5. 0 DB ... Y Desl, Oata

6. 1 P8R,AA+X+' NEW PCH (7 cVClet) C' 2 6. 0 DBA.Y .0 , P,BR, NEW PC OpCode I ,. Sourc~ Address 7. 0 DBA,V '0
.2Qb Absolu te IndexEtd Indirect PBR,PC Op Code , . ~""."." [' PBR,PC Op Code

(Jump 10 Subrou l lne IndexEtd p,BR,PC+l AAL I c "'Number 01 Byles 10 Move · I 2, PBR,PC+l DBA

Indirect) (a,.) O.S PCH 0 I,V Decrement 3. , PBR.PC+2 SB ..

IJ S R) 0.S-1 PCL 0 MVP IS used when the N-' •. 0 SBA.X-l Source Dala 1

(1 Qp Code) PBR PC*2 AAH destina tion 518" address Byte f). I 0 DBA,Y-' Desl. Dlta 0

(J hy1 f1s l PflA_PC' 2 '0 IS hlQher (more pOS lllve) C = 1 6, 0 0 DBA,V-' .0

(8 eye let) PBA,AA·X NEW PCl than the i ource slart address, 1, 0 0 DBA,V-, ,0

PBR,AA+Xf, NEW PCH

l
, 1 PBA,PC Op COde , PBR,NEW PC Nexi Op Code FFFFFF 2. 0 , PBR,PC+' DBA

21, Slack (Hardware , , PBR ,PC '0 t ~L S'." H BYle 3. 0 , PBR.PC+2 SBA

In terrup ts} a (3) 0 0 PBR.PC .0 Lut • . 1 0 SBA.X-2 Source Dala

(IRO,NMI ,ABORT, RES) I7J 0 O. S PBR tee St.n C:O 5. , 0 DBA,Y-2 Desl Data

(4 hardw ilife Interrup ls) • 0 O.S-1 PCH Oest, End 6. 0 0 DBA,V-2 10

(0 bytes) 5- 0 0,5-2 PCL ~rceEnc1 7. 0 0 DBA,V-2 .0

(7 and 8 cycles) 6. 0 0 .5 - 3 P 00000o 1. 1 PBA.PC·3 NUIOpCode ,
1. 0 O,VA AAVl
I . 0 O,VA·, AAVH * 24b. Bloc" Move Neg. t.l

['
, PBR.PC Cp COde , O,AAV Next OpCode I (blc\wArd, arc :t. PBA.PC+' DBA

21b Slack l So llware ,. 1 PUA.PC OpCode ("'VH, H-2 3. PBR,PC+2 SB"
Interrupts) _ 13, . 2. I peR.pc+, Signature 1 11 OP Coo.) ey,. " SBA.X Source Dala

IBRK.CO P) 17) 3. 0 O,S PBR 0 (HYI." C ' 2 ~. , DBA.Y eelt Oa'i

12 Op Cooe') • 0 O,S-' PCH 0 (1 eye'." 6. 0 DBA.Y '0
(2 by1 M) ~. 0 0.S-2 pel 0 SOVrce ACSGr.sa 7. 0 DBA.Y 10

(7 Ind 8 cycles, 6. 0 0.S -3 (COP lalchM) P 0 y ' Dottln.hon

1 0 a,VA AAVL , . __ ." _ .. [1 PBR.PC OpCode

" 0 O.V ·, AAVH __ y Inctement 2, 1 PBA,PC+' DBA

'. 1 O,AAV NeJlt Op Code 'j'J-- ~: l
I PBR,PC+2 SBA

2'c Stlek (Return tram 1 , PBR,PC Op Code
1 0 SBA,X·' Source Dala

1 I 0 DBA,Y.' Dest Data
Interrupt) I 2. 0 0 peR,PC+')0

DoitEnd ~" 0 0 DBA,Y+' 10
(RT') (3) 3. 0 0 PBR,PC+' .0 0 0 DBA,V.' .0
(lOp Code) '. 0 O,S+1 P

~';!::" ~: (I byte) s. 0 0.S-2 PCl
, PBR.PC Op Code

(6 and 7 cycles) 6. 0 0.S -3 PCH 2 , PBR,PC+' DB"

fdillerent order Irom N6S(2) (1) 1 0 O.S·. paR 00000o H eVIl 3.
, PBR,PC+2 SBA

1. I PBR.PC New Op Code 1 e-o •. 0 SBA,X·2 Source Dall

21d Slack (Return Irom I , ,~eA.PC OpCode
M"N 1$ uMd when lho $. 0 OBA.V+2 Dest Oala

oosltnatlOn 'tan .dGlleU 6. 0 DBA,V+2 '0
SubrOullne) • :t. 0 PBR,PC+1 '0 It lowe, (mor. neg.IIVI) 1. 0 DBA,Y+2 .0
fRTS) 3. 0 PBR,PC+' .0 tn,n the ,lOUlee Ilart 1. , PBR,PC+3 Nellt OpCode
(lOp Code) '. 'O,S·' PCl
(1 byte) 5. 0,S·2 PCH

add,eSl.

(6 cycles) 6 0.5-2)0
1. 1 PBR.PC Op Code Notes:

*2te Staclt (Rei urn tram 1. PBR,PC OpCode (1) Add' byte (lor Imm9dlale only) lor M=O or XsO (I,e '6 bi! dala). add 1 cycle for M=Q or)(=0,

Subroutine Long) I 2. PBA,PC+' .0 (2) Add' cycle lor dlrecl register low (Ol) not equal O.
IRTL) 3. PBR.PC+' '0 (3) Special case lor aborting inSlruction This is the last cycle wtlich may be aborted Or the Sialus,
(10p Code) • 0.5-1 NEW PCl
(1 byle) 5. 0.5+2 NEW PCH

paR Qr DBA registers will be updaled.

(6 cycles) ~ 0.S+3 NEW PBR (01) Add, cycle for indeXing Beron page boundaries. or write, or X=O, When X"'l or in Ihe

1. NEW PBR.PC NelC.lOp Code emuli!o~ion mode. this cycle conlalns Invalid addresses..

211 Stack /PUsr"l)' 1) PBR,PC Op COcM 15) Add 1 cycle if branch IS taken.

(PHP.PHA,PHY,PHX, 2 0 PBR,PC+' .0 (6) Add 1 cycle II branch IS taken across page bound'''IS In 6502 emulation mode (E a l)

PHD.PHK,PHB) (I) 3a 0 O.S Aeglsler High (7) Subtrec1 1 cycle lor 6.502 emulallOn mode (E= 1)
(7 Op Codes) 3 0 D,S-I Aeglster Low (B) Add 1 cyc le lor REP.SEP.
(1 byte)
(3 .. nd 4 cycles) (~) Wait.1 cycle 2 lor 2 cycles aller NMr or iAO acllve Input.

21Q Slack (Putt) • 1 PBR.PC OpCodo Abbrevlallont:
(PlP,PLA, PLY, PlX, PLD,PlB) 0 PBR,PC+' '0
(Olilereni than N6502) 0 PBR.PC+' .0 AAB Absolute Addreas Bank

(6 Op COdes) '. O,S+' RegISter low AAH Absolute Address High

(1 by1eJ (1) .. O,S+2 RegISter High AAl Absolute AddreiS low

(4 and 5 eycles) AAVH Absolule Address Vector High

*2,h, Staclt (Puah Ellecllve 1 , PBR,PC OpCode
AAVl Absolute Address Vecior low

Indirect Address) I 2. I PBA,PC+' 00
C Accumulator

(pE') 12) 2. 0 PBA,PC·' 10
o Direct Reglsler

(lOpCOde) 3 . 0 0,0+00 A"L
DBA Oesllnallon Bank Addra ..

(2 bytes) '. 0 0,0+00+' AAH I
OBR Oala BanI!. Register

(6 and 7 cycle" 5 0 0.5 AAH 0
00 Direct Ollael

6. 0 O.S-' ,,"L 0
IOH Immedl.te Data Hlgr"l
10l Immediate Oala low

*211. Staclt (Push ENactlVl ,. '1 PBA,PC Op Code 10 Inlernal Operalion
Absolute Address) • 2 PBR,PC+' l P Slatus Aeglsler
(PEA) 3. PBR,PC+2 H PBR Program Bank Reglsler
II Op Code) • O.S H PC ProQ'ram Count.r
(3 bytes) S. O,S-' L R-M·W Read·Modily-Wrile
(5 cycles) S Stack Addre ..

*21. Stad, (Push Elfeclrve 1 , I peA,PC Op Coda SBA Source aanlt Addr.u

PrOQram Counler Relal lve 2. 1. 0 paR,PC+' Otfsallow SO StaCk Ollset

AddrlllS) I 3 0 1 PBR.PC+2 OliN I High VA Vector Addreg

IPER) .. 0 0 PBA.PC+2 '0 .,V Indu Regllt"r.

(lOp COde) 5- 0 0.5 PCH·OFF. • .It New W6SCB,6/802 Addresaing Mod ..
(3 by181) CARRY e .It New W6SC02 Addressing ~od"
(6 cycles) 0 P,S-1 PCl +OFFSET 0 Blanlt a NMOS 6502 Addreuing Model

·22 Slack Rel.llve d.a I I , PBA.PC Op Coda
(OAA.ANO.EOR,AOl, 2. 0 , PBA.PC+' SO
STA,LOA.CMP.SDC) 3 0 0 PBA.PC+' '0
(8 Op COdes) 0 0.5+50 Dati low \/0
(2 byt ••) P) •• 0 O,S-SO+' 0.11 HiOh \/0
(... and 5 cycle.)

21

~, xxrs" ex- GKO: GJ; ~ •

I

I I

65C816 Data Sheet

Recommended W65C816 and W65C802 Assembler
Syntax Standards
Directives
Assembler directives are those parts of the assembly language source
program which give directions to the assembler; this includes the defini­
tio~ of data area and constants within a program. This standard excludes
any definitions of assembler directives.

Comments 'I:.
An assembler should provide a way to use any line of the source program
as a comment. The recommended way of doing this Is tp treat any blank
line, or any line that starts with a semi-colon or an ast~ri$k as a comment.
Other special characters may be used as well. ': '

The Source Line
Any line which causes the generation' of a single W65C816 or W65C802
machine language instruction should be divided into four fields: a label
field, the operation code, the operand, and the comment field.

The Label Field-The label field begins in column one of the line. A label
must start with an alphabetic character, and may be fOllowed by zero or
more alphanumeric characters. An assembler may define an upper limit
on the number of characters that can be in a label, so long as that upper
limit is greater than or equal to six characters. An assembler may limit
the alphabetic characters to upper-case characters if desired. If lower­
case characters are allowed, they should be treated as identical to their
upper-case equivalents. Other characters may be allowed in the label, so
long as their use does not conflict with the coding of operand fields.

The Operation Code Field-The operation code shall consist of a three
character sequence (mnemonic) from Table 3. It shall start no sooner
than column 2 of the line, or one space after the label if a label is coded.

Many of the operation codes in Table3 have duplicate mnemonics; when
two or more machine language instructions have the same mnemonic,
the assembler resolves the difference based on th~ operand.

If an assembler allows lower-case letters in labels, it must also allow
lower-case letters in the mnemonic. Whe;' lower-c'l~e letters are used in
the mnemonic, they shall be treated as equivalent to the upper-case
counterpart. Thus, the mnemonics LOA, Ida, and LdA must all be recog­
nized, and are equivalent. , ,

In addition to the mnemonics shown in Table 3, an assembler may pro­
vide the alternate mnemonics shown in Table 6.

Alternate Mnemonics

Standard
BCC
BCS
CMPA
OECA
INCA
JSL
JML
TCO
TCS
TOC
TSC
XBA

Alias
BL'(:
BGE
CMA
OEA
INA
JSR
JMP
TAO
TAS
TOA
TSA
SWA

JSL should be recognized as equivalent to JSR wher it is specified with a
long absolute address. JML is equivalent to JMP with long addressing
forced.

The Operand Field-The operand field may start no sooner than one
space atter the operation code field. The assembler must be capable of
at least twenty-four bit address calculations. The assembler should be
capable of specifying addresses as labels, integer constants, and hexa­
decimal constants. The assembler must allow addition and subtraction
in the operand field. Labels shall be recognized by the fact that they start
alphabetic characters. Decimal numbers shall be recognized as contain­
ing only the decimal digits 0 . .. 9. Hexadecimal cons\ants shall be recog­
nized by prefixing the constant with a "$" character, followed by zero or
more of either the decimal digits or the hexadecimal digits "A" .. . "F". If
lower-case letters are allowed in the label field, then they shall also be
allowed as hexadecimal digits.

All constants, no matter what their format, shall provide at least enough
precision to specify all values that can be represented by a twenty-four
bit signed or uns'igned integer represented in two's complement notation.

Table 8 shows the operand formats which shall be recognized by the
assembler. The symbol d is a label or value which the assembler can
recognize as being less than $100. Thesymbol. isa label or value which
the assembler can recognize as greater the $FF but less than $10000; the
symbol 81 is a label or value that the assembler can recognize as being
greater than $FfFF. The symbol EXT is a label which cannot be located
by the assembler at the time the instruction is assembled. Unless in­
structed otherv.lisEi",~an assembler shall assume that EXT labels are two
bytes long. The symbols rand rI are 8 and 16 bit signed displacements
calculated by the ~ssembler.

Note that the operand does not determine whether or not immediate
addressing loads one or two bytes; this is determined by the setting of
the status register. This forces the requirement for a directive or directives
that tell the assembler to generate one or two bytes of space for imme­
diate loads. The. directives provided shall allow separate settings for the
accumulator and index registers.

The assembler shall use the <, >, and" characters after the # character
in immediate address to specify which byte or bytes will be selected from
the value of the operand. Any calculations in the operand must be per­
formed before the byte selection takes place. Table 7 defines the action
taken by each operand by showing the effect of the operator on an ad­
dress. The column that shows a two byte immediate value show the bytes
in the order in ~hich they appear in memory. The coding of the operand
is for an assem\>ler which uses 32 bit address calculations, showing the
way that the address should be reduced to a 24 bit value.

Operand

11$01020304
11<$01020304
11>$01020304
11"$01020304

Byte Selection Operator

One Byte Result
04
04
03
02

Two Byte Rs.ult

04 03
04 03
03 02
02 01

I n any location ip an operand where an address, or expression resulting in
an address, can be coded, the assembler shall recognize the prefix char­
acters<.l, and >, which force one byte (direct page), two byte (absolute)
or three byte (I~ng absolute) addressing . In cases where the addressing
mode is not forced, the assembler shall assume that the address is two
bytes unless the assembler is able to determine the type of addressing re­
quired by conl'ext, in which case that addressing mode will be used. Ad­
dresses shall oe truncated without error if an addressing mode is forced
which does not require the entire value of the address. For example,

LOA $0203 LOA 1$010203

are completely equivalent. If the addressing mode is not forced, and the
type of addressing cannot be determined from context, the assembler
shall assume that a two byte address is to be used. If an instruction does
not h.ave a short addressing mode (as in LOA, which has no direct page
indexed by V) and a short address is used in the operand, the assembler
shall automatically extend the address by padding the most significant
bytes with zeroes in order to extend the address to the length needed. As
with immediate addressing, any expression evaluation shall take place
before the address is selected; thus, the address selection character is
only used once, before the address of expression.

The! (exclamation pOint) character should be supported as an alternative
to the 1 (vertical bar).

A long indirect,address is indicated in the operand field of an instruction
by surrounding the dire~t page address where the indirect address is
found by square brackets; direct page addresses which contain sixteen­
bit addresses are indicated by being surrounded by parentheses.

The operands of a block move instruction are specified as source bank,
destination ban,k-the opposite order of the object bytes generated.

Comment Flel~-The comment field may start no sooner than one space
after the operation code field or operand field depending on instruction
type.

22

Addressing Mode

Immediate

Absolute

Absolute Long

Direct Page

Accumulator
Implied Addressing
Direct Indirect

Indexed

Direct Indirect
. Indexed Long

Direct Indexed
Indirect

Direct Indexed by X

Direct Indexed by Y

Absolute Indexed by X

Formal

#d
#a
#al
#EXT
#<d
#<a
#<al
#<EXT
#>d
#>a
#>al
H>EXT
Hlld
#lIa
#lIal
#11 EXT
!d
!a
a
!al
!EXT
EXT
>d
>a
>al
al
>EXT
d
<d
<a
<al
<EXT
A
(no operand)
(d),y
«d),y
«a),Y
«al).y
«EXT),y
[d).y
[<d],y
[<a],y
[<al],y
[<EXT],y
(d,x)
«d,x)
«a,x)
«al,x)
«EXT,x)
d,x
<d,x
<a,x
<al,x
<EXT,x
d,y
<d,y
<a,y
<al,y
<EXT,y
d,x
!d,x
a,x
!a,x
!al,x
!EXT,x
EXT,x

1"-

l";
~" rl~

65C816 Data Sheet

Address Mode For!1lals

Addressing !Mode

Absolute In~exed by Y

I
Absolute Long Indexed

by X !

"

Program Counter
Relative and
Program!Counter
Relative L.ong

Absolu te Indirect

Direct Indirect

Direct Indirect Long
,
i

Absolute Indexed

Stack Addressing
Stack Relative
Indirect Indexed

Block Move

Note: The alternate! (exclamation point) is used In place of the I (vertical bar).

23

Formal

Id,y
d,y
a,y
la,y
!el,y
!EXT,y
EXT,y
>d,x
>a,x
>al,x
al,x
>EXT,x
d (the assembler calculates
a rand rI)
al
EXT
(d)
(!d)
(a)
(!a)
(!al)
(EXT)
(d)
«a)
«al)
«EXT)
[d]
[<a]
[<all
[<EXT)
(d,x)
(Id,x)
(a,x)
(!a,x)
(!al,x)
(EXT,x)
(!EXT,x)
(no operand)
(d,s).y
«d,s),y
«a,s),y
«al,s).y
«EXT,s),y
d,d
d,a
d,al
d,EXT
a,d
a,a
a,al
a,EXT
al,d
al,a
al,al
al,EXT
EXT,d
EXT,a
EXT,al
EXT,EXT

r
r

--
65C816 Data Sheet

--
-- Addressing Mode Summary

Memory Utlllzallon

I
Instruction Tlnljes In Number 0' Program
In Memory CyC!lel Sequence By tea

i Original J New Original New
Address Mode ,/ 8BII NMOS W65p816 8BIINMOS W65C816

" I I 6502 i 6502
--

1. Immediate ,: I 2 !,' 2/3)
I ·

2 2(3)

2. Absolute 4(5) j '. 4(3,5) 3 3
3. Absolute long - ',: 5(3) - 4

_ ..
4. Direct " 3(5) !:'3(3.4.5) 2 2
5. Accumulator 2 ! 2 1 1 -- 6. Implied 2 2 1 1

; .
7. Direct Indirect Indexed (d),y 511) 5(1·3.4) 2 2
S. Direct Indirect Indexed long [dJ, y - ~(3.4) - 2
9. Direct Indexed Indirect (d,x) 6 6(3,4) 2 2 - 10. Direct, X 4(5) 4(3.4.5) 2 2

11 . Direct, Y 4 4(3.4) 2 2
12. Absolute, X 4(1.5) 4(1.3.5) 3 3
13. Absolute long, X - 5(3) - 4 --- 14. Absolute, Y 4(1) 4(1,3) 3 3
15. Relative 2(1 ·2) 2(2) 2 2
16. Relative long - 3(2) - 3
17. Absolute Indirect (Jump) 5 5 3 :)

18. Direct Indirect - 5(3.4) - 2 --
19. Direct Indirect long - 6(3.4) - 2
20. Absolute Indexed Indirect (Jump) - 6 - 3
21 , Stack 3-7 ; 3-S 1-3 1-4
22. Stack Relative - I 4(3) - 2
23. Stack Relative Indirect Indexed j - I 7(3) - 2

._-
24, Block Move X, Y, C (Source, Destination, Block length) - 7 - 3

NOTES: -- 1. Page boundary, add 1 cycle if page boundary is crossed when forming address.
2. Branch taken, add 1 cycle if branch is taken.
3. M = 0 or X = 0, 16 bit operation, add 1 cycle, add 1 byte for immediate.
4. Direct register low (Dl) not equal zero, add 1 cycle.

- .. 5. Read-Modify-Write, add 2 cycles for M = 1, add 3 cycles for M = O.

--
..

--

- ..

- ..
24

65C816 Data Sheet

Caveats and Application Information
Stack Addressing
When in the Native mode, the Stack may use memory locations 000000
to OOFFFFF. The effective address of Stack, St'ack Relative, and Stack
Relative Indirect Indexed addressing modes will always be within this
range. In the Emulation mode, the Stack address, range is 000100 to
0001 FF. The following opcodes and addressing modes will increment or
decrement beyond this range when accessing 1wo or three bytes:

JSL; JSR(a,x); PEA; PEl; PER; PHD; PLD,; RTL; d,s; (d,s),y
;

Direct Addressing
The Direct Addressing modes are often used to acce,ss memory registers
and pointers. The effective address generated by birect; Direct,X and
Direct,Y addressing modes will always be in 'the Native mode range
000000 to OOFFFF. When in the Emulation mode', the direct addressing
range is 000000 to OOOOFF, except for [Direct] and [Direct],Y addressing
modes and the PEl instruction which will increment from OOOOFE or
OOOOFF into the Stack area.

When in the Emulation mode and DH is not equal to zero, the direct
addressing range is OODHOO to OODHFF, except for [Direct] and [Direct],Y
addressing modes and the PEl instruction which will increment from '
OODHFE or OODHFF into the next higher page.

When in the Emulation mode and DL in not equal to zero, the direct
addressing range is 000000 to OOFFFF.

Absolute Indexed Addressing (W65CB16 Only)
The Absolute Indexed addressing modes are used to address data out­
side the direct addressing range. The W65C02 and W65C802 addressing
range is 0000 to FFFF. Indexing from page FFXX may result in a OOYY
data fetch when using the W65C02 or W65C802. In contrast, indexing
from page ZZFFXX may result in ZZ+1 ,OOYY when using the W65C816.

Future Microprocessors (i.e., W65CB32)
Future WDC microprocessors will support all current W65C816 operat­
ing modes for both index and offset address g~neration.

ABORT Input (W65CB16 Only)
ABORT should be held low for a period not to exceed one cycle. Also, if
ABORT is held low during the Abort Interrupt sequence, the Abort Inter­
rupt will be aborted. It is not recommended to abort the Abort Interrupt.
The ABORT internal latch is cleared during the second cycle of the Abort
Interrupt. Asserting the ABORT input after the following instruction
'cycles will cause registers to be modified:
• Read-Modily-Wrlte: Processor status modified if ABORT is asserted

after a modify cycle. . __ _
• RTI: Processor status will be mOdified if ABORT is asserted after

£Y£IeL --- ---
• IRa, NMI, ABORT BRK, COP: When ABORT is asserted after cycle 2,

PBR and DBR will become 00 (Emulation mode) or PBR will become
00 (Native mode).

The Abort Interrupt has been designed for virtual memory systems. For
this reason, asynChronous ABORT's may cause undesirable results due
to the above cond itions.

VDA and VPA Valid Memory Address Output Signals (W65CB16
Only)
When VDA or VPA are high and during all write cycles, the Address Bus
is always valid . VDA and VPA should be used to qualify all memory cycles.
Note that when VDA and VPA are both low, invalid addresses may be
generated. The Page and Bank addresses could also be invalid. This will
be due to low byte addition only. The cycle when only low byte addition
occurs is an optional cycle for instructions which,read memory when the
Index Register consists of 8 bits. This optional cycle becomes a standard
cycle for the Store instruction, all instructions using the 16-bit Index
Register mode, and the Read-Modify-Write instruction when using 8- or
16-bit Index Register modes.

Apple II, lie, IIc and 11+ Disk Systems (W65CB16 Orily)
VDA and VPA should not be used to qualify addresses during disk opera­
tion on Apple systems. Consult your Apple representative for hardwarel
software conligurations.

DBIBA Operation when ROY is Pulled Low (W65CB16 Only)
When ROY is low, the Data Bus is held in the data transfer state (Le., ¢2
high). The Bank address external transparent latch should be latched
when the ¢2 clock or ROY is low.

MIX Output (W65CB16 Only)
The MIX output reflects the value of the M and X bits of the processor
Status Register. The REP, SEP and PLP instructions may change the
state of the M and X bits. Note that the MIX output is invalid during the
instruction cycle following REP, SEP and PLP instruction execution.
This cycle i~used as the opcode fetch cycle of the next instruction.

All Opcodes Function in All Modes of Operation
It should be noted that all opcodes function in all modes of operation.
However, some instructions and addressing modes are intended for
W65C816 24-bit addressing and are therefore less useful forthe W65C802.
The fOllowing is a list of instructions and addressing modes which are
primarily intended for W65C816 use:

JSL; RTL; [d]; [d],y; JMP al; JML; al; al,x

The following Instructions may be used with the W65C802 even though
a Bank Address is not multiplexed on the Data Bus:

i PHK; PHB; PLB

The following instructions have "limited" use in the Emulation mode:

• The REP and SEP instructions cannot modify the M and X bits when in
the Emulation mode. In this mode the M and X bits will always be high
(logic 1).

• When in the Emulation mode, the MVP and MVN instructions use the
X and Y Index Registers for the memory address. Also, the MVP and
MVN instructions can only move data within the memory range 0000
(Source Bank) to DOFF (Destination Bank) for the W65C816, and 0000
to OOFF for the W65C802.

Indirect Jumps
The JMP (a) and JML (a) instructions use the direct Bank for indirect
addressing, while JMP (a,x) and JSR (a,x) use the Program Bank for in­
direct addre,ss tables.

Switching Modes
When switching from the Native mode to the Emulation mode, the X and
M bits of the Status Register are set high (logic 1). the high byte of the
Stack is set to 01, and the high bytes of the X and Y Index Registers are
set to 00. To save previous values, these bytes must always be stored
before changing modes. Note that the low byte of the S, X and Y Registers
and the low and high byte of the Accumulator (A and B) are not affected
by a mode change.

How Hardware Interrupts, BRK, and COP Instructions Affect
the Program Bank and the Data Bank Registers
When in the Native mode, the Program Bank register (PBR) is cleared to
00 when a hardware interrupt, BRK or COP is executed. In the Native
mode, previous PBR contents is automatically saved on Stack.

In the Emulation mode, the PBR and DBR registers are cleared to 00 when
a hardware interrupt, BRK or COP is executed. In this case, previous con­
tents of the PBR are not automatically saved.

Npte that a Return from Interrupt (RTI) should always be executed from
the same "mode" which originally generated the interrupt.

Binary Mode
The Binary ,mode is set whenever a hardware or software interrupt is
executed. The 0 flag within the Status Register is cleared to zero.

I

WAI Instru'ction
The WAI instructio~ls ROY low and places the processor in the WAI
"lOW power" mode. NMI, IRQ or RESET will terminate the WAI condition
and transfer control to the interrupt handler routine. Note that an ABORT
input will abort the WAI instruction, but will not restart the processor.
When the Status Register I flag is set (IRQ disabled), the ~ interrupt
will cause the next instruction (following the WAI instruction) to be
executed without going to the IRQ interrupt handler. This method re­
sults in the highest speed response to an IRQ input. When an interrupt

25

. r
I

.,

,I

~~A"
--

__ ~~ ______________________ ~ ______ _

_ ..

- ,.

--....

-,.

..

. - ..

-_.

•

- ..

- ..

-......:;;,...;~--------------------'~------'--
--'--'----- ~~ ,- >--

65C816 Data Sheet

is received after an Iii30RT which occurs during the WAI instruction, the

processor will return to the WAI instruction. Other than RES (highest

priority). ABORT is the next highest priority, followed by NMI or IRQ

interrupts. I
I'

STP Instruction I
The STP instruction disables the </>2 clock to all circuitry. When disabled,

the </>2 clock is held in the high state. In this case, Ine Data Bus will remain

in the data transfer state and the Bank address will ~ot be multiplexed

onto the Data Bus. Upon executing the STP instruction, the RES signal is

the'only input which can restart the processor. The processor is restarted

by enabling the </>2 clock. which occurs on the falling edge of the RES

input. Note that the external oscillator must be stable and operating prop­

erly before RES goes high.

COP Signatures
Signatures 00-7F may be user defined. while signatures 80-FF are re­

served for instructions on future microprocessors (i.e .. W65C832) . Con­

tact WDC for software emulation of future microprocessor hardware

functions.

WOM Opcode Use
The WDM opcode will be used on future microprocessors. For example.

the new W65C832 uses this opcode to provlQe 32-blt float ing-point and

other 32-bit math and data operations. Note that the W65C832 will be a

plug-ta-plug replacement for the W65C816. and can be used where high­

speed. 32-bit math processing is required. The W65C832 will be available

in the near future.

ROY Pulled During Write .
The NMOS 6502 does not stop during a write operation. In contrast. both

the W65C02 and the W65C816 do stop during write operations. The

W65C802 stops during a write when in the Native mode. but does not

stop when in the Emulation mode.

MVN and MVP Affects on the Data Bank Register
The MVN and MVP instructions change the Dala Bank Register to the

value of the second byte of the instruction (destination bank address).

Interrupt Priorilles
The following in1~rruPt priorities will be in effect should more than one

interrupt occur a the same time:

RES • Highest Priori ty

ABORT !:
NMI
IRQ . I Lowest Priority

Transfers from 8-Bit to 16-BII, or 16-Blt to 8-BII Registers

All transfers from one register to another will result in a full 16-bi t output

from the source register. The destination register size will determine the

number of bits actually stored in the destinat ion register and the values

stored in the proce.ssor Status Register. The follow ing are always 16-bit

transfers. regardless of the accumulator size:

TCS; TSC; TCO; TOC

Stack Transfers
When in the Emulation mode. a 01 Is forced into SH. In this case. the B

Accumulator will not be loaded into SH during a TCS instruction. When

in the Native mode. the B Accumulator is transferred to SH. Note that in

both the Emulation and Native modes. the full 16 bits of the Stack Regis­

ter are transferred to tlie A. Band C Accumulators. regardless Of the

state of the M bit in the Status Register.

I

.I
r·

' .

26

